Variational Model for Low-Dimensional Magnets

被引:0
|
作者
Kudasov, Yu. B. [1 ,2 ]
Kozabaranov, R. V. [1 ]
机构
[1] Natl Res Nucl Univ Moscow Engn Phys Inst MEPhI, Sarov State Phys & Tech Inst, Sarov Branch, Sarov 607186, Russia
[2] All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Sarov 607188, Russia
关键词
one-dimensional quantum magnets; XXZchain in the alternating magnetic field; variational theory; Gutzwiller method; ground state; FIELD-INDUCED GAP; SPIN GAP; CHAIN;
D O I
10.1134/S1063783420090176
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The method of nonlocal trial variation function for quantum one-dimensional systems is developed on an example of a spin-1/2XXZchain with an alternating magnetic field. A four-site trial wave function for a fermionic representation of the model is constructed. The results obtained using the model with the extended trial wave function show a considerable improvement of accuracy of the ground state energy calculation in the field of critical behavior in comparison with the solutions obtained earlier. The methods for calculating the experimentally observed spin correlation function are considered.
引用
收藏
页码:1678 / 1684
页数:7
相关论文
共 50 条
  • [21] On a low-dimensional model for magnetostriction
    Iyer, RV
    Manservisi, S
    PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) : 378 - 382
  • [22] On a low-dimensional model for ferromagnetism
    Iyer, RV
    Krishnaprasad, PS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (08) : 1447 - 1482
  • [23] Novel properties of frustrated low-dimensional magnets with pentagonal symmetry
    Jagannathan, A.
    Motz, Benjamin
    Vedmedenko, E.
    PHILOSOPHICAL MAGAZINE, 2011, 91 (19-21) : 2765 - 2772
  • [24] Recent Developments in Low-Dimensional Copper(II) Molecular Magnets
    Landee, Christopher P.
    Turnbull, Mark M.
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2013, (13) : 2266 - 2285
  • [25] Electric control of magnetism in low-dimensional magnets on ferroelectric surfaces
    Odkhuu, Dorj
    Tsevelmaa, Tumurbaatar
    Rhim, S. H.
    Hong, Soon Cheol
    Sangaa, Deleg
    AIP ADVANCES, 2017, 7 (05):
  • [26] Computer simulation studies of phase transitions and low-dimensional magnets
    Kamieniarz, G
    PHASE TRANSITIONS, 1996, 57 (1-3) : 105 - 137
  • [27] Superspace approach to the superstructures of CDW compounds and low-dimensional magnets
    van Smaalen, S
    Lüdecke, J
    JOURNAL DE PHYSIQUE IV, 1999, 9 (P10): : 371 - 373
  • [28] Variational model for one-dimensional quantum magnets
    Kudasov, Yu. B.
    Kozabaranov, R. V.
    PHYSICS LETTERS A, 2018, 382 (16) : 1120 - 1123
  • [29] A low-dimensional model of separation bubbles
    Krechetnikov, R.
    Marsden, J. E.
    Nagib, H. M.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (14) : 1152 - 1160
  • [30] MOSSBAUER RELAXATION STUDIES OF NONLINEAR DYNAMIC EXCITATIONS IN LOW-DIMENSIONAL MAGNETS
    DEGROOT, HJM
    DEJONGH, LJ
    ELMASSALAMI, M
    SMIT, HHA
    THIEL, RC
    HYPERFINE INTERACTIONS, 1986, 27 (1-4): : 93 - 110