Single-Image Super-Resolution Based on Rational Fractal Interpolation

被引:134
|
作者
Zhang, Yunfeng [1 ]
Fan, Qinglan [1 ]
Bao, Fangxun [2 ]
Liu, Yifang [3 ]
Zhang, Caiming [4 ]
机构
[1] Shandong Univ Finance & Econ, Dept Comp Sci & Technol, Jinan 250014, Shandong, Peoples R China
[2] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
[3] SUNY Buffalo, Univ Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
[4] Shandong Univ, Dept Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; rational fractal interpolation; image features; scaling factor; local fractal analysis;
D O I
10.1109/TIP.2018.2826139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel single-image superresolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.
引用
收藏
页码:3782 / 3797
页数:16
相关论文
共 50 条
  • [21] Single-image super-resolution based on sparse kernel ridge regression
    Wu, Fanlu
    Wang, Xiangjun
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [22] Single-Image Super-Resolution based on Regularization with Stationary Gradient Fidelity
    Yu, Lejun
    Cao, Siming
    He, Jun
    Sun, Bo
    Dai, Feng
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [23] FRESH-FRI-Based Single-Image Super-Resolution Algorithm
    Wei, Xiaoyao
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3723 - 3735
  • [24] Boosting Regression-Based Single-Image Super-Resolution Reconstruction
    Luo Shuang
    Huang Hui
    Zhang Kaibing
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (08)
  • [25] Face quality analysis of single-image super-resolution based on SIFT
    Hu, Xiao
    Sun, Juan
    Mai, Zhuohao
    Li, Shuyi
    Peng, Shaohu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (04) : 829 - 837
  • [26] Single-Image Super-Resolution Based on Semi-Supervised Learning
    Tang, Yi
    Yuan, Yuan
    Yan, Pingkun
    Li, Xuelong
    Pan, Xiaoli
    Li, Luoqing
    2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 52 - 56
  • [27] Blind Single-Image Super-Resolution Reconstruction Based on Motion Blur
    Qin, Fengqing
    Li, Zhong
    Zhu, Lihong
    You, Yingde
    Cao, Lilan
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 895 - 899
  • [28] REGULARIZED SINGLE-IMAGE SUPER-RESOLUTION BASED ON PROGRESSIVE GRADIENT ESTIMATION
    Yu, Lejun
    Wu, Xiaoyu
    Ge, Fengxiang
    Sun, Bo
    He, Jun
    Sablatnig, Robert
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1985 - 1989
  • [29] Single-Image Super-Resolution Challenges: A Brief Review
    Ye, Shutong
    Zhao, Shengyu
    Hu, Yaocong
    Xie, Chao
    ELECTRONICS, 2023, 12 (13)
  • [30] Single-image super-resolution via local learning
    Tang, Yi
    Yan, Pingkun
    Yuan, Yuan
    Li, Xuelong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2011, 2 (01) : 15 - 23