Single-image super-resolution via local learning

被引:89
|
作者
Tang, Yi [1 ]
Yan, Pingkun [1 ]
Yuan, Yuan [1 ]
Li, Xuelong [1 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPt IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Super-resolution; Local learning; Generalization; Reproducing kernel; Kernel ridge regression; Similarity;
D O I
10.1007/s13042-011-0011-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nearest neighbor-based algorithms are popular in example-based super-resolution from a single image. The core idea behind such algorithms is that similar images are close in the sense of distance measurement. However, it is well known in the field of machine learning and statistical learning theory that the generalization of the nearest neighbor-based estimation is poor, when complex or high dimensional data are considered. To improve the power of the nearest neighbor-based algorithms in single-image based super-resolution, a local learning method is proposed in this paper. Similar to the nearest neighbor-based algorithms, a local training set is generated according to the similarity between the training samples and a given test sample. For super-resolving the given test sample, a local regression function is learned on the local training set. The generalization of nearest neighbor-based algorithms can be enhanced by the process of local regression. Based on such an idea, we propose a novel local-learning-based algorithm, where kernel ridge regression algorithm is used in local regression for its well generalization. Some experimental results verify the effectiveness and efficiency of the local learning algorithm in single-image based super-resolution.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [1] Single-image super-resolution via local learning
    Yi Tang
    Pingkun Yan
    Yuan Yuan
    Xuelong Li
    International Journal of Machine Learning and Cybernetics, 2011, 2 : 15 - 23
  • [2] Learning Local Distribution for Extremely Efficient Single-Image Super-Resolution
    Wu, Wei
    Xu, Wen
    Zheng, Bolun
    Huang, Aiai
    Yan, Chenggang
    ELECTRONICS, 2022, 11 (09)
  • [3] Joint Learning for Single-Image Super-Resolution via a Coupled Constraint
    Gao, Xinbo
    Zhang, Kaibing
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (02) : 469 - 480
  • [4] LOCAL OPERATOR ESTIMATION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 39 - 44
  • [5] EXTERNAL AND INTERNAL LEARNING FOR SINGLE-IMAGE SUPER-RESOLUTION
    Wang, Shuang
    Lin, Shaopeng
    Liang, Xuefeng
    Yue, Bo
    Jiao, Licheng
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 128 - 132
  • [6] Fast Single-Image Super-Resolution via Deep Network With Component Learning
    Xie, Chao
    Zeng, Weili
    Lu, Xiaobo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (12) : 3473 - 3486
  • [7] Single-Image Super-Resolution: A Survey
    Yao, Tingting
    Luo, Yu
    Chen, Yantong
    Yang, Dongqiao
    Zhao, Lei
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 119 - 125
  • [8] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [9] A Practical Contrastive Learning Framework for Single-Image Super-Resolution
    Wu, Gang
    Jiang, Junjun
    Liu, Xianming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15834 - 15845
  • [10] A Conspectus of Deep Learning Techniques for Single-Image Super-Resolution
    Pandey, Garima
    Ghanekar, Umesh
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (01) : 11 - 32