Optimal regularization parameter in approximate TPS interpolation

被引:0
|
作者
Guo, Song-Na [1 ]
Yang, Xuan [1 ]
Sun, Hong-Yuan [2 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Sch Chem & Chem Engn, Shenzhen 518060, Peoples R China
来源
PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2008年
关键词
thin-plate spline; regularization parameter; fuzzy integral;
D O I
10.1109/ICMLC.2008.4620614
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The thin plate splines (TPS) has been applied to landmark-based elastic image registration. However, TPS forces the corresponding landmarks to exactly match each other, which is problematic when the localization of landmarks is prone to sonic error. Approximating TPS (ATPS) has been proposed to weak the interpolation condition. In ATPS, the regularization parameter plays an important role. It controls the smoothness of the transformation. Unfortunately, how to estimate is not solved. In this paper, estimation of the optimal regularization parameter has been proposed. It combines two evaluation factors, smoothness and location error hypothesis testing, to evaluate transformation results using fuzzy integral. The optimal regularization parameter is the best value maximizing the evaluation function. Experiments of the artificial grids and medial images show that our technique is feasible.
引用
收藏
页码:1347 / +
页数:2
相关论文
共 50 条
  • [41] Estimation of the optimal regularization parameter of an iterative wavelet algorithm for signal recovery
    Yu. E. Voskoboynikov
    Optoelectronics, Instrumentation and Data Processing, 2013, 49 (2) : 115 - 123
  • [42] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438
  • [43] Interpolation and Regularization for Causal Learning
    Vankadara, Leena Chennuru
    Rendsburg, Luca
    von Luxburg, Ulrike
    Ghoshdastidar, Debarghya
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [44] Interpolation and Regularization for Causal Learning
    Vankadara, Leena Chennuru
    Rendsburg, Luca
    von Luxburg, Ulrike
    Ghoshdastidar, Debarghya
    arXiv, 2022,
  • [45] OPTIMAL LEAST-SQUARE FILTERING AND INTERPOLATION IN DISTRIBUTED PARAMETER SYSTEMS
    HWANG, M
    SEINFELD, JH
    GAVALAS, GR
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 39 (01) : 49 - &
  • [46] Minimal residual method provides optimal regularization parameter for diffuse optical tomography
    Jagannath, Ravi Prasad K.
    Yalavarthy, Phaneendra K.
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (10)
  • [47] REGULARIZATION OF III-POSED PROBLEMS - OPTIMAL PARAMETER CHOICE IN FINITE DIMENSIONS
    GROETSCH, CW
    NEUBAUER, A
    JOURNAL OF APPROXIMATION THEORY, 1989, 58 (02) : 184 - 200
  • [48] A Robust Algorithm for Selecting Optimal Regularization Parameter Based on Bilateral Accumulative Area
    Chen, Riqing
    Li, Jianning
    Wu, Jian
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 4893 - 4896
  • [49] Optimal regularization parameter of the multichannel filtered-x affine projection algorithm
    Carini, Alberto
    Sicuranza, Giovanni L.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (10) : 4882 - 4895
  • [50] On the quasi-optimal rules for the choice of the regularization parameter in case of a noisy operator
    Raus, Toomas
    Hamarik, Uno
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (02) : 221 - 233