Optimal regularization parameter in approximate TPS interpolation

被引:0
|
作者
Guo, Song-Na [1 ]
Yang, Xuan [1 ]
Sun, Hong-Yuan [2 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Sch Chem & Chem Engn, Shenzhen 518060, Peoples R China
来源
PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2008年
关键词
thin-plate spline; regularization parameter; fuzzy integral;
D O I
10.1109/ICMLC.2008.4620614
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The thin plate splines (TPS) has been applied to landmark-based elastic image registration. However, TPS forces the corresponding landmarks to exactly match each other, which is problematic when the localization of landmarks is prone to sonic error. Approximating TPS (ATPS) has been proposed to weak the interpolation condition. In ATPS, the regularization parameter plays an important role. It controls the smoothness of the transformation. Unfortunately, how to estimate is not solved. In this paper, estimation of the optimal regularization parameter has been proposed. It combines two evaluation factors, smoothness and location error hypothesis testing, to evaluate transformation results using fuzzy integral. The optimal regularization parameter is the best value maximizing the evaluation function. Experiments of the artificial grids and medial images show that our technique is feasible.
引用
收藏
页码:1347 / +
页数:2
相关论文
共 50 条
  • [31] OPTIMAL REGULARIZATION OF SOLUTIONS OF APPROXIMATE STOCHASTIC-SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS
    ZHDANOV, AI
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1990, 30 (05): : 224 - 229
  • [32] Optimal parameter choice rule for filter-based regularization schemes
    Sayana, K. J.
    Reddy, G. D.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 481
  • [33] Tikhonov regularization based on near-optimal regularization parameter with application to capacitance tomography image reconstruction
    Sun, Ning
    Peng, Li-Hui
    Zhang, Bao-Fen
    Shuju Caiji Yu Chuli/Journal of Data Acquisition and Processing, 2004, 19 (04): : 429 - 432
  • [34] ON THE CHOICE OF THE OPTIMAL PARAMETER FOR TIKHONOV REGULARIZATION OF ILL-POSED PROBLEMS
    LI, H
    CHINESE SCIENCE BULLETIN, 1992, 37 (21): : 1770 - 1773
  • [35] Estimation of the Optimal Regularization Parameter of an Iterative Wavelet Algorithm for Signal Recovery
    Voskoboynikov, Yu. E.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2013, 49 (02) : 115 - 123
  • [36] Optimal Selection of the Regularization Parameter for pyGIMLi: Geophysical Inversion and Modeling Library
    Quiceno, Brayan A.
    Munoz, Andres M.
    Paniagua, Juan G.
    Bustamante, Moises O.
    2022 IEEE ANDESCON, 2022, : 582 - 586
  • [37] Automatic Determination of Optimal Regularization Parameter in Rational Polynomial Coefficients Derivation
    Youn, Junhee
    Kim, Tae-Hoon
    Hong, Changhee
    Hwang, Jung-Rae
    INTELLIGENT SYSTEMS FOR CRISIS MANAGEMENT: GEO-INFORMATION FOR DISASTER MANAGEMENT (GI4DM) 2012, 2013, : 135 - 145
  • [38] Direct Access to the Optimal Regularization Parameter in Distribution of Relaxation Times Analysis
    Schlueter, Nicolas
    Ernst, Sabine
    Schroeder, Uwe
    CHEMELECTROCHEM, 2020, 7 (16): : 3445 - 3458
  • [39] ON THE CHOICE OF THE OPTIMAL PARAMETER FOR TIKHONOV REGULARIZATION OF ILL-POSED PROBLEMS
    李浩
    Chinese Science Bulletin, 1992, (21) : 1770 - 1773
  • [40] Efficient determination of optimal regularization parameter for inverse problem in EXAFS spectroscopy
    Kunicke, M.
    Kamensky, I. Yu.
    Babanov, Yu. A.
    Funke, H.
    PHYSICA SCRIPTA, 2005, T115 : 237 - 239