Superconvergence of Hermite rule for hypersingular integrals on interval

被引:4
|
作者
Zhao, Qingli [1 ,2 ]
Rui, Hongxing [1 ]
Li, Jin [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Peoples R China
关键词
hypersingular integral; boundary elment methods; composite Hermite rule; superconvergence; error expansion; FINITE-PART INTEGRALS; CAUCHY PRINCIPAL VALUE; NEWTON-COTES RULES; SUPERSINGULAR INTEGRALS; NUMERICAL EVALUATION; GAUSSIAN QUADRATURE; SINGULAR-INTEGRALS; COMPUTATION; EQUATIONS; FORMULAS;
D O I
10.1080/00207160.2012.752076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the composite Hermite rule for the computation of the hypersingular integrals on interval is studied and the error expansion is presented. The superconvergence result of the Hermite rule is derived, which is one order higher than general. At last, several numerical examples are provided to validate the theoretical analysis.
引用
收藏
页码:1448 / 1458
页数:11
相关论文
共 50 条