Superconvergence of Hermite rule for hypersingular integrals on interval

被引:4
|
作者
Zhao, Qingli [1 ,2 ]
Rui, Hongxing [1 ]
Li, Jin [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Peoples R China
关键词
hypersingular integral; boundary elment methods; composite Hermite rule; superconvergence; error expansion; FINITE-PART INTEGRALS; CAUCHY PRINCIPAL VALUE; NEWTON-COTES RULES; SUPERSINGULAR INTEGRALS; NUMERICAL EVALUATION; GAUSSIAN QUADRATURE; SINGULAR-INTEGRALS; COMPUTATION; EQUATIONS; FORMULAS;
D O I
10.1080/00207160.2012.752076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the composite Hermite rule for the computation of the hypersingular integrals on interval is studied and the error expansion is presented. The superconvergence result of the Hermite rule is derived, which is one order higher than general. At last, several numerical examples are provided to validate the theoretical analysis.
引用
收藏
页码:1448 / 1458
页数:11
相关论文
共 50 条
  • [31] HYPERSINGULAR INTEGRALS AND PARABOLIC POTENTIALS
    CHANILLO, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (02) : 531 - 547
  • [32] ON ONE CLASS OF HYPERSINGULAR INTEGRALS
    LYAKHOV, LN
    DOKLADY AKADEMII NAUK SSSR, 1990, 315 (02): : 291 - 296
  • [33] NUMERICAL EVALUATION OF HYPERSINGULAR INTEGRALS
    MONEGATO, G
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 50 (1-3) : 9 - 31
  • [34] A GAUSSIAN QUADRATURE RULE FOR OSCILLATORY INTEGRALS ON A BOUNDED INTERVAL
    Asheim, Andreas
    Deano, Alfredo
    Huybrechs, Daan
    Wang, Haiyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (03) : 883 - 901
  • [35] Approximate Methods for Calculating Hypersingular Integrals
    Boykov, I., V
    Aykashev, P., V
    TECHNICAL PHYSICS, 2022, 67 (06) : 448 - 455
  • [36] Approximate Methods for Calculating Hypersingular Integrals
    I. V. Boykov
    P. V. Aykashev
    Technical Physics, 2022, 67 : 448 - 455
  • [37] Asymptotic error expansions for hypersingular integrals
    Jin Huang
    Zhu Wang
    Rui Zhu
    Advances in Computational Mathematics, 2013, 38 : 257 - 279
  • [38] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR INTERVAL-VALUED MULTIPLICATIVE INTEGRALS
    Ali, Muhammad Aamir
    Zhang, Zhiyue
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1428 - 1448
  • [39] An approximate method for evaluating hypersingular integrals
    Boykov, I. V.
    Boikova, A. I.
    Ventsel, E. S.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (09) : 799 - 807
  • [40] Generalized differences and general hypersingular integrals
    Gots, EG
    Lyakhov, LN
    DOKLADY MATHEMATICS, 2005, 72 (03) : 908 - 911