Nanophotonic light trapping in solar cells

被引:231
|
作者
Mokkapati, S. [1 ]
Catchpole, K. R. [2 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Ctr Sustainable Energy Syst, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
ABSORPTION ENHANCEMENT; ANTIREFLECTION GRATINGS; PHOTONIC CRYSTAL; SURFACE TEXTURES; SUBMICROMETER GRATINGS; LIMITING EFFICIENCY; OPTICAL-PROPERTIES; FUNDAMENTAL LIMIT; REAR SURFACE; SILICON;
D O I
10.1063/1.4747795
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanophotonic light trapping for solar cells is an exciting field that has seen exponential growth in the last few years. There has been a growing appreciation for solar energy as a major solution to the world's energy problems, and the need to reduce materials costs by the use of thinner solar cells. At the same time, we have the newly developed ability to fabricate controlled structures on the nanoscale quickly and cheaply, and the computational power to optimize the structures and extract physical insights. In this paper, we review the theory of nanophotonic light trapping, with experimental examples given where possible. We focus particularly on periodic structures, since this is where physical understanding is most developed, and where theory and experiment can be most directly compared. We also provide a discussion on the parasitic losses and electrical effects that need to be considered when designing nanophotonic solar cells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747795]
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Directional selectivity and light-trapping in solar cells
    Ulbrich, Carolin
    Fahr, Stephan
    Peters, Marius
    Uepping, Johannes
    Kirchartz, Thomas
    Rockstuhl, Carsten
    Goldschmidt, Jan Christoph
    Loeper, Philipp
    Wehrspohn, Ralf
    Gombert, Andreas
    Lederer, Falk
    Rau, Uwe
    PHOTONICS FOR SOLAR ENERGY SYSTEMS II, 2008, 7002
  • [42] Optics and Light Trapping for Tandem Solar Cells on Silicon
    Lal, Niraj N.
    White, Thomas P.
    Catchpole, Kylie R.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (06): : 1380 - 1386
  • [43] Enhancement of light trapping for thin film solar cells
    Yasha Yi
    Wei Guo
    Yueheng Peng
    MRS Advances, 2019, 4 : 743 - 748
  • [44] Influence of nanostructure geometry on light trapping in solar cells
    Pylypova, O.
    Havryliuk, O.
    Antonin, S.
    Evtukh, A.
    Skryshevsky, V.
    Ivanov, I.
    Shmahlii, S.
    Applied Nanoscience (Switzerland), 2022, 12 (03): : 769 - 774
  • [45] Light Trapping in Ultrathin Monocrystalline Silicon Solar Cells
    Yu, Ki Jun
    Gao, Li
    Park, Jae Suk
    Lee, Yu Ri
    Corcoran, Christopher J.
    Nuzzo, Ralph G.
    Chanda, Debashis
    Rogers, John A.
    ADVANCED ENERGY MATERIALS, 2013, 3 (11) : 1401 - 1406
  • [46] Nanostructures for Light Trapping in Thin Film Solar Cells
    Amalathas, Amalraj Peter
    Alkaisi, Maan M.
    MICROMACHINES, 2019, 10 (09)
  • [47] Enhancement of light trapping for thin film solar cells
    Yi, Yasha
    Guo, Wei
    Peng, Yueheng
    MRS ADVANCES, 2019, 4 (13) : 743 - 748
  • [48] Light trapping in thin film organic solar cells
    Tang, Zheng
    Tress, Wolfgang
    Inganas, Olle
    MATERIALS TODAY, 2014, 17 (08) : 389 - 396
  • [49] Influence of nanostructure geometry on light trapping in solar cells
    O. Pylypova
    O. Havryliuk
    S. Antonin
    A. Evtukh
    V. Skryshevsky
    I. Ivanov
    S. Shmahlii
    Applied Nanoscience, 2022, 12 : 769 - 774
  • [50] Light trapping of organic solar cells by nanotextured surfaces
    Kubota, Shigeru
    Kanomata, Kensaku
    Ahmmad, Bashir
    Mizuno, Jun
    Hirose, Fumihiko
    2015 International Conference on Electronic Packaging and iMAPS All Asia Conference (ICEP-IAAC), 2015, : 428 - 431