Nanophotonic light trapping in solar cells

被引:231
|
作者
Mokkapati, S. [1 ]
Catchpole, K. R. [2 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Ctr Sustainable Energy Syst, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
ABSORPTION ENHANCEMENT; ANTIREFLECTION GRATINGS; PHOTONIC CRYSTAL; SURFACE TEXTURES; SUBMICROMETER GRATINGS; LIMITING EFFICIENCY; OPTICAL-PROPERTIES; FUNDAMENTAL LIMIT; REAR SURFACE; SILICON;
D O I
10.1063/1.4747795
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nanophotonic light trapping for solar cells is an exciting field that has seen exponential growth in the last few years. There has been a growing appreciation for solar energy as a major solution to the world's energy problems, and the need to reduce materials costs by the use of thinner solar cells. At the same time, we have the newly developed ability to fabricate controlled structures on the nanoscale quickly and cheaply, and the computational power to optimize the structures and extract physical insights. In this paper, we review the theory of nanophotonic light trapping, with experimental examples given where possible. We focus particularly on periodic structures, since this is where physical understanding is most developed, and where theory and experiment can be most directly compared. We also provide a discussion on the parasitic losses and electrical effects that need to be considered when designing nanophotonic solar cells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747795]
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Light Trapping in Silicon Nanowire Solar Cells
    Garnett, Erik
    Yang, Peidong
    NANO LETTERS, 2010, 10 (03) : 1082 - 1087
  • [32] Light-trapping in perovskite solar cells
    Du, Qing Guo
    Shen, Guansheng
    John, Sajeev
    AIP ADVANCES, 2016, 6 (06):
  • [33] Disordered nanophotonic surfaces for enhanced light collection in semiconductor solar cells
    Carlson, Chelsea
    Hughes, Stephen
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (05) : 1093 - 1104
  • [34] Nanophotonic light trapping with patterned transparent conductive oxides
    Vasudev, Alok P.
    Schuller, Jon A.
    Brongersma, Mark L.
    OPTICS EXPRESS, 2012, 20 (10): : A385 - A394
  • [35] Nanophotonic light management for perovskite-silicon tandem solar cells
    Chen, Duote
    Manley, Phillip
    Tockhorn, Philipp
    Eisenhauer, David
    Koeppel, Grit
    Hammerschmidt, Martin
    Burger, Sven
    Albrecht, Steve
    Becker, Christiane
    Jaeger, Klaus
    JOURNAL OF PHOTONICS FOR ENERGY, 2018, 8 (02):
  • [36] Nanophotonic light trapping in polycrystalline silicon thin-film solar cells using periodically nanoimprint-structured glass substrates
    Becker, Christiane
    Xavier, Jolly
    Preidel, Veit
    Wyss, Philippe
    Sontheimer, Tobias
    Rech, Bernd
    Probst, Juergen
    Huelsen, Christoph
    Loechel, Bernd
    Erko, Alexei
    Burger, Sven
    Schmidt, Frank
    Back, Franziska
    Rudigier-Voigt, Eveline
    NEXT GENERATION (NANO) PHOTONIC AND CELL TECHNOLOGIES FOR SOLAR ENERGY CONVERSION IV, 2013, 8824
  • [37] Light Trapping Color Filters for Semitransparent Solar Cells
    Kim, Minji
    Ryu, Junyeong
    Park, Jongdeok
    Lee, Jae-Joon
    Hyun, Jerome K.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (02) : 665 - 674
  • [38] New theoretical limits for light trapping in solar cells
    Collin, Stephane
    Giteau, Maxime
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [39] Rugate filter for light-trapping in solar cells
    Fahr, Stephan
    Ulbrich, Carolin
    Kirchartz, Thomas
    Rau, Uwe
    Rockstuhl, Carsten
    Lederer, Falk
    OPTICS EXPRESS, 2008, 16 (13): : 9332 - 9343
  • [40] Quantifying the Effects of Light Trapping on GaAs Solar Cells
    Borrely, Thales
    De Lima, Marcelo Delmondes
    Quivy, Alain Andre
    35TH SYMPOSIUM ON MICROELECTRONICS TECHNOLOGY AND DEVICES (SBMICRO2021), 2021,