Multi-task learning of classification and denoising (MLCD) for noise-robust rotor system diagnosis

被引:25
|
作者
Ko, Jin Uk [1 ]
Jung, Joon Ha [2 ]
Kim, Myungyon [1 ]
Kong, Hyeon Bae [1 ]
Lee, Jinwook [1 ]
Youn, Byeng D. [1 ,3 ,4 ]
机构
[1] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 08826, South Korea
[2] Korea Inst Machinery & Mat, Syst Dynam Lab, Daejeon 34103, South Korea
[3] Seoul Natl Univ, Inst Adv Machines & Design, Seoul 08826, South Korea
[4] Onepredict Inc, Seoul 06160, South Korea
基金
新加坡国家研究基金会;
关键词
Fault diagnosis; Deep learning; Multi-task learning; Classification and denoising; Rotor system; CONVOLUTIONAL NEURAL-NETWORK; BEARING FAULT-DIAGNOSIS; GEARBOX; REPRESENTATION; AUTOENCODERS;
D O I
10.1016/j.compind.2020.103385
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning-based research has drawn much attention in the field of fault diagnosis of various mechanical systems due to its powerful performance. In deep learning-based methods, signals become the input for a deep learning algorithm. However, the performance of an algorithm can be diminished if there is significant noise in the data. To address the noise issue, this paper proposes a fault diagnosis method called multi-task learning of classification and denoising (MLCD). The proposed method is designed to make a fault diagnosis algorithm robust against the noise in vibration signals by learning the denoising task simultaneously with the classification. Given a noisy input, MLCD can improve test accuracy by implementing denoising as an auxiliary task, using hyperparameters chosen by Bayesian optimization. To validate the proposed MLCD method, it is integrated with the two most commonly used deep learning algorithms: long short-term memory and one-dimensional convolutional neural network. For a case study, these algorithms are tested to classify the states of a rotor testbed data. The results show that the proposed MLCD method extracts noise-robust and meaningful features; ultimately, this improves the fault diagnosis performance. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Guided Learning: A New Paradigm for Multi-task Classification
    Fu, Jingru
    Zhang, Lei
    Zhang, Bob
    Jia, Wei
    BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 239 - 246
  • [32] A multi-task learning network for skin disease classification
    Wang, W.
    Wang, Y.
    Zhao, S.
    Chen, X.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (08) : S52 - S52
  • [33] Multi-task Learning for One-class Classification
    Yang, Haiqin
    King, Irwin
    Lyu, Michael R.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [34] Multi-task learning for classification with Dirichlet process priors
    Xue, Ya
    Liao, Xuejun
    Carin, Lawrence
    Krishnapuram, Balaji
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 35 - 63
  • [35] Multi-task Learning Deep Neural Networks For Speech Feature Denoising
    Huang, Bin
    Ke, Dengfeng
    Zheng, Hao
    Xu, Bo
    Xu, Yanyan
    Su, Kaile
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 2464 - 2468
  • [36] Generative Adversarial Network With Robust Discriminator Through Multi-Task Learning for Low-Dose CT Denoising
    Kyung, Sunggu
    Won, Jongjun
    Pak, Seongyong
    Kim, Sunwoo
    Lee, Sangyoon
    Park, Kanggil
    Hong, Gil-Sun
    Kim, Namkug
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 499 - 518
  • [37] Robust Lifelong Multi-task Multi-view Representation Learning
    Sun, Gan
    Cong, Yang
    Li, Jun
    Fu, Yun
    2018 9TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK), 2018, : 91 - 98
  • [38] Dataset for modulation classification and signal type classification for multi-task and single task learning
    Jagannath, Anu
    Jagannath, Jithin
    COMPUTER NETWORKS, 2021, 199
  • [39] Bearing Fault Diagnosis based on Multi-task Learning
    Mao, Wentao
    He, Jianliang
    Feng, Wushi
    Tian, Siyu
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 358 - 363
  • [40] Noise-Robust Sound-Event Classification System with Texture Analysis
    Choi, Yongju
    Atif, Othmane
    Lee, Jonguk
    Park, Daihee
    Chung, Yongwha
    SYMMETRY-BASEL, 2018, 10 (09):