Multi-task learning of classification and denoising (MLCD) for noise-robust rotor system diagnosis

被引:25
|
作者
Ko, Jin Uk [1 ]
Jung, Joon Ha [2 ]
Kim, Myungyon [1 ]
Kong, Hyeon Bae [1 ]
Lee, Jinwook [1 ]
Youn, Byeng D. [1 ,3 ,4 ]
机构
[1] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 08826, South Korea
[2] Korea Inst Machinery & Mat, Syst Dynam Lab, Daejeon 34103, South Korea
[3] Seoul Natl Univ, Inst Adv Machines & Design, Seoul 08826, South Korea
[4] Onepredict Inc, Seoul 06160, South Korea
基金
新加坡国家研究基金会;
关键词
Fault diagnosis; Deep learning; Multi-task learning; Classification and denoising; Rotor system; CONVOLUTIONAL NEURAL-NETWORK; BEARING FAULT-DIAGNOSIS; GEARBOX; REPRESENTATION; AUTOENCODERS;
D O I
10.1016/j.compind.2020.103385
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning-based research has drawn much attention in the field of fault diagnosis of various mechanical systems due to its powerful performance. In deep learning-based methods, signals become the input for a deep learning algorithm. However, the performance of an algorithm can be diminished if there is significant noise in the data. To address the noise issue, this paper proposes a fault diagnosis method called multi-task learning of classification and denoising (MLCD). The proposed method is designed to make a fault diagnosis algorithm robust against the noise in vibration signals by learning the denoising task simultaneously with the classification. Given a noisy input, MLCD can improve test accuracy by implementing denoising as an auxiliary task, using hyperparameters chosen by Bayesian optimization. To validate the proposed MLCD method, it is integrated with the two most commonly used deep learning algorithms: long short-term memory and one-dimensional convolutional neural network. For a case study, these algorithms are tested to classify the states of a rotor testbed data. The results show that the proposed MLCD method extracts noise-robust and meaningful features; ultimately, this improves the fault diagnosis performance. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Robust Estimator based Adaptive Multi-Task Learning
    Zhu, Peiyuan
    Chen, Cailian
    He, Jianping
    Zhu, Shanying
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 740 - 747
  • [22] SYNERGISTIC NETWORK LEARNING AND LABEL CORRECTION FOR NOISE-ROBUST IMAGE CLASSIFICATION
    Gong, Chen
    Bin, Kong
    Seibel, Eric J.
    Wang, Xin
    Yin, Youbing
    Song, Qi
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4253 - 4257
  • [23] Robust Task Grouping with Representative Tasks for Clustered Multi-Task Learning
    Yao, Yaqiang
    Cao, Jie
    Chen, Huanhuan
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1408 - 1417
  • [24] Multi-task learning for object keypoints detection and classification
    Xu, Jie
    Zhao, Lin
    Zhang, Shanshan
    Gong, Chen
    Yang, Jian
    PATTERN RECOGNITION LETTERS, 2020, 130 : 182 - 188
  • [25] Curriculum Learning for Multi-Task Classification of Visual Attributes
    Sarafianos, Nikolaos
    Giannakopoulos, Theodore
    Nikou, Christophoros
    Kakadiaris, Ioannis A.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2608 - 2615
  • [26] Hierarchical Multi-Task Learning for Healthy Drink Classification
    Park, Homin
    Bharadhwaj, Homanga
    Lim, Brian Y.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [27] Multi-Task Diffusion Learning for Time Series Classification
    Zheng, Shaoqiu
    Liu, Zhen
    Tian, Long
    Ye, Ling
    Zheng, Shixin
    Peng, Peng
    Chu, Wei
    ELECTRONICS, 2024, 13 (20)
  • [28] Survey on multi-task learning for object classification and recognition
    Li H.
    Wang F.
    Ding W.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (01):
  • [29] Multi-task learning for classification with Dirichlet process priors
    Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States
    不详
    J. Mach. Learn. Res., 2007, (35-63):
  • [30] Deep multi-task learning for malware image classification
    Bensaoud, Ahmed
    Kalita, Jugal
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 64