Approximation by Jakimovski-Leviatan Type Operators on a Complex Domain

被引:6
|
作者
Sucu, Sezgin [1 ]
Ibikli, Ertan [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Tandogan, Turkey
关键词
Szasz operator; Appell polynomials; Jakimovski-Leviatan type operators; Vitali's theorem; Q-BERNSTEIN POLYNOMIALS; COMPACT-DISKS; CONVERGENCE;
D O I
10.1007/s11785-012-0283-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper deals with the study of approximation by complex Stancu type generalization of Jakimovski-Leviatan type operators on a parabolic domain subset of complex plane by using the methods of Dressel et al. (Pacific J Math 13(4):1171-1180, 1963).
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [31] Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bogel Space
    Alotaibi, Abdullah
    MATHEMATICS, 2022, 10 (05)
  • [32] Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials
    Mursaleen, M.
    AL-Abeid, A. A. H.
    Ansari, Khursheed J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1251 - 1265
  • [33] On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers
    Alotaibi, Abdullah
    MATHEMATICS, 2023, 11 (04)
  • [34] On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [35] Approximation using Jakimovski–Leviatan operators of Durrmeyer type with 2D-Appell polynomials
    Manoj Kumar
    Nusrat Raza
    M. Mursaleen
    Journal of Inequalities and Applications, 2025 (1)
  • [36] Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials
    M. Mursaleen
    A. A. H. AL-Abeid
    Khursheed J. Ansari
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1251 - 1265
  • [37] On the Chlodowsky variant of Jakimovski-Leviatan-Paltanea Operators
    Dalmanoglu, Ozge
    Orkcu, Mediha
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (03): : 821 - 833
  • [38] A sequence of Appell polynomials and the associated Jakimovski–Leviatan operators
    Ana-Maria Acu
    Ioan Cristian Buscu
    Ioan Rasa
    Analysis and Mathematical Physics, 2021, 11
  • [39] APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS
    Agrawal, P. N.
    Kumar, Ajay
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1522 - 1536
  • [40] CONVERGENCE ON SEQUENCES OF SZASZ-JAKIMOVSKI-LEVIATAN TYPE OPERATORS AND RELATED RESULTS
    Nasiruzzaman, Mohammad
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (02): : 218 - 230