Topic Selection in Latent Dirichlet Allocation

被引:0
|
作者
Wang, Biao [1 ]
Liu, Zelong [2 ]
Li, Maozhen [2 ]
Liu, Yang [3 ]
Qi, Man [4 ]
机构
[1] State Grid Sichuan Elect Power Res Inst, Chengdu, Peoples R China
[2] Brunel Univ, Sch Engn & Design, Uxbridge UB8 3PH, Middx, England
[3] Sichuan Univ, Sch Elect Engn & Informat Syst, Chengdu 610065, Peoples R China
[4] Canterbury Christ Church Univ, Dept Comp, Canterbury CT1 1QU, Kent, England
关键词
MapReduce; job scheduling; data locality;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Latent Dirichlet Allocation (LDA) has been widely applied to text mining. LDA is a probabilistic topic model which processes documents as the probability distribution of topics. One challenging issue in application of LDA is to select the optimal number of topics in LDA model. This paper presents a topic selection method which considers the density of each topic and computes the most unstable topic structure through an iteration process. Evaluation results show that the proposed method can generate an optimal number of topics automatically with a small number of iterations.
引用
收藏
页码:756 / 760
页数:5
相关论文
共 50 条
  • [31] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 601 - 608
  • [32] AUGMENTED LATENT DIRICHLET ALLOCATION (LDA) TOPIC MODEL WITH GAUSSIAN MIXTURE TOPICS
    Prabhudesai, Kedar S.
    Mainsah, Boyla O.
    Collins, Leslie M.
    Throckmorton, Chandra S.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2451 - 2455
  • [33] Using Latent Dirichlet Allocation to Incorporate Domain Knowledge For Topic Transition Detection
    Zhu, Xiaodan
    He, Xuming
    Munteanu, Cosmin
    Penn, Gerald
    INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 2442 - 2445
  • [34] Topic Regression Multi-Modal Latent Dirichlet Allocation for Image Annotation
    Putthividhya, Duangmanee
    Attias, Hagai T.
    Nagarajan, Srikantan S.
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3408 - 3415
  • [35] Research Topic Analysis in Engineering Management Using a Latent Dirichlet Allocation Model
    Kim, Jin Ho
    Chen, Weiru
    JOURNAL OF INDUSTRIAL INTEGRATION AND MANAGEMENT-INNOVATION AND ENTREPRENEURSHIP, 2018, 3 (04):
  • [36] Useful ToPIC: Self-tuning strategies to enhance Latent Dirichlet Allocation
    Proto, Stefano
    Di Corso, Evelina
    Ventura, Francesco
    Cerquitelli, Tania
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 33 - 40
  • [37] Local–class–shared–topic latent Dirichlet allocation based scene classification
    Chao Huang
    Wang Luo
    Yurui Xie
    Multimedia Tools and Applications, 2017, 76 : 15661 - 15679
  • [38] Topic Analysis of the Research Domain in Knowledge Organization: A Latent Dirichlet Allocation Approach
    Joo, Soohyung
    Choi, Inkyung
    Choi, Namjoo
    KNOWLEDGE ORGANIZATION, 2018, 45 (02): : 170 - 183
  • [39] Indonesian's Song Lyrics Topic Modelling using Latent Dirichlet Allocation
    Laoh, Enrico
    Surjandari, Isti
    Febirautami, Limisgy Ramadhina
    2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 270 - 274
  • [40] Topic Extraction and Sentiment Classification by using Latent Dirichlet Markov Allocation and SentiWordNet
    Kaur, Preet Chandan
    Ghorpade, Tushar
    Mane, Vanita
    INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY & COMPUTING, 2016, 2016,