Topic Selection in Latent Dirichlet Allocation

被引:0
|
作者
Wang, Biao [1 ]
Liu, Zelong [2 ]
Li, Maozhen [2 ]
Liu, Yang [3 ]
Qi, Man [4 ]
机构
[1] State Grid Sichuan Elect Power Res Inst, Chengdu, Peoples R China
[2] Brunel Univ, Sch Engn & Design, Uxbridge UB8 3PH, Middx, England
[3] Sichuan Univ, Sch Elect Engn & Informat Syst, Chengdu 610065, Peoples R China
[4] Canterbury Christ Church Univ, Dept Comp, Canterbury CT1 1QU, Kent, England
关键词
MapReduce; job scheduling; data locality;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Latent Dirichlet Allocation (LDA) has been widely applied to text mining. LDA is a probabilistic topic model which processes documents as the probability distribution of topics. One challenging issue in application of LDA is to select the optimal number of topics in LDA model. This paper presents a topic selection method which considers the density of each topic and computes the most unstable topic structure through an iteration process. Evaluation results show that the proposed method can generate an optimal number of topics automatically with a small number of iterations.
引用
收藏
页码:756 / 760
页数:5
相关论文
共 50 条
  • [21] Road Traffic Topic Modeling on Twitter using Latent Dirichlet Allocation
    Hidayatullah, Ahmad Fathan
    Ma'arif, Muhammad Rifqi
    2017 INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET), 2017, : 47 - 52
  • [22] An exploration of research trends on metaverse: topic modeling with latent dirichlet allocation
    Park H.
    Ahn B.
    Kim T.
    Quality & Quantity, 2025, 59 (1) : 233 - 252
  • [23] Language Model Adaptation Based on Topic Probability of Latent Dirichlet Allocation
    Jeon, Hyung-Bae
    Lee, Soo-Young
    ETRI JOURNAL, 2016, 38 (03) : 487 - 493
  • [24] Topic and Trend Detection in Text Collections Using Latent Dirichlet Allocation
    Bolelli, Levent
    Ertekin, Seyda
    Giles, C. Lee
    ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS, 2009, 5478 : 776 - +
  • [25] A FRAMEWORK OF URDU TOPIC MODELING USING LATENT DIRICHLET ALLOCATION (LDA)
    Shakeel, Khadija
    Tahir, Ghulam Rasool
    Tehseen, Irsha
    Ali, Mubashir
    2018 IEEE 8TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2018, : 117 - 123
  • [26] ldagibbs: A command for topic modeling in Stata using latent Dirichlet allocation
    Schwarz, Carlo
    STATA JOURNAL, 2018, 18 (01): : 101 - 117
  • [27] Latent Dirichlet allocation (LDA) for topic modeling of the CFPB consumer complaints
    Bastani, Kaveh
    Namavari, Hamed
    Shaffer, Jeffrey
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 127 : 256 - 271
  • [28] Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey
    Jelodar, Hamed
    Wang, Yongli
    Yuan, Chi
    Feng, Xia
    Jiang, Xiahui
    Li, Yanchao
    Zhao, Liang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (11) : 15169 - 15211
  • [29] Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey
    Hamed Jelodar
    Yongli Wang
    Chi Yuan
    Xia Feng
    Xiahui Jiang
    Yanchao Li
    Liang Zhao
    Multimedia Tools and Applications, 2019, 78 : 15169 - 15211
  • [30] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022