Impact of Semiconductor Permittivity Reduction on Electrical Characteristics of Nanoscale MOSFETs

被引:5
|
作者
Chen, Si-Hua [1 ]
Lian, Shang-Wei [2 ]
Wu, Tzung Rang [1 ]
Chang, Tay-Rong [2 ,3 ]
Liou, Jia-Ming [4 ]
Lu, Darsen D. [1 ]
Kao, Kuo-Hsing [1 ,3 ,5 ]
Chen, Nan-Yow [5 ]
Lee, Wen-Jay [5 ]
Tsai, Jyun-Hwei [5 ]
机构
[1] NCKU, Dept Elect Engn, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[3] NCKU, Ctr Quantum Frontiers Res & Technol Q Fort, Tainan 701, Taiwan
[4] Natl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
[5] Natl Ctr High Performance Comp, Hsinchu 30076, Taiwan
关键词
Green's function (NEGF); nonequilibrium; permittivity; polarization; quantization; subthreshold swing; threshold voltage;
D O I
10.1109/TED.2019.2912058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The dielectric screening property of a semiconductor is very crucial for the electrical characteristics of a MOSFET, and which can be described mathematically by Poisson equation via the permittivity. While the theory and experiments have corroborated the permittivity reduction of nanoscale Si, this paper studies the electrical characteristics of MOSFETs considering the reduced channel permittivity by quantum transport simulations. It is found that the channel permittivity reduction may mitigate the short-channel effects, showing subthreshold swing improvement and threshold voltage shift of MOSFETs in nanoscale. Compared to quantization effects, the positive and negative impacts of the channel permittivity reduction on the devices in particularly nanoscale have been investigated. This paper elucidates the necessity of considering semiconductor permittivity reduction for nanoscale device design and simulations.
引用
收藏
页码:2509 / 2512
页数:4
相关论文
共 50 条
  • [21] Tuning the electrical resistivity of semiconductor thin films by nanoscale corrugation
    Ono, Shota
    Shima, Hiroyuki
    PHYSICAL REVIEW B, 2009, 79 (23)
  • [22] Two-dimensional electrical characterization of ultrashallow source/drain extensions for nanoscale MOSFETs
    Singisetti, U
    McCartney, MR
    Li, J
    Chakraborty, PS
    Goodnick, SM
    Kozicki, MN
    Thornton, TJ
    SUPERLATTICES AND MICROSTRUCTURES, 2003, 34 (3-6) : 301 - 310
  • [23] Nanoscale Thick FDSOI MOSFETs: A Simple Model of Abnormal Electrical Behavior at Low Temperature
    Karsenty, Avi
    Chelly, Avraham
    2014 IEEE 28TH CONVENTION OF ELECTRICAL & ELECTRONICS ENGINEERS IN ISRAEL (IEEEI), 2014,
  • [24] Reduction Behavior and Characteristics of Metal Oxides in the Nanoscale
    Halim, K. S. Abdel
    El-Geassy, A. A.
    Ramadan, Mohamed
    Nasr, M. I.
    Hussein, A.
    Fathy, Naglaa
    Alghamdi, Abdulaziz S.
    METALS, 2022, 12 (12)
  • [25] Multiscale Modeling of Permittivity of Polymers With Aging: Analysis of Molecular Scale Properties and Their Impact on Electrical Permittivity
    Suraci, Simone Vincenzo
    Colin, Xavier
    Fabiani, Davide
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2022, 29 (05) : 1795 - 1802
  • [26] A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs
    Sevcenco, Andrei
    Brezeanu, Gheorghe
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2008, 11 (04): : 383 - 395
  • [27] Impact of random dopant fluctuations on trap-assisted tunnelling in nanoscale MOSFETs
    Gerrer, L.
    Markov, S.
    Amoroso, S. M.
    Adamu-Lema, F.
    Asenova, A.
    MICROELECTRONICS RELIABILITY, 2012, 52 (9-10) : 1918 - 1923
  • [28] ELECTRICAL CHARACTERISTICS OF METAL-SEMICONDUCTOR JUNCTIONS
    SCHNEIDER, MV
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1980, 28 (11) : 1169 - 1173
  • [29] Electrical characteristics of single semiconductor nanocrystals.
    Alivisatos, AP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U470 - U470
  • [30] Electrical modeling and simulation of nanoscale MOS devices with a high-permittivity dielectric gate stack
    Autran, JL
    Munteanu, D
    Houssa, M
    Bescond, M
    Garros, X
    Leroux, C
    INTEGRATION OF ADVANCED MICRO-AND NANOELECTRONIC DEVICES-CRITICAL ISSUES AND SOLUTIONS, 2004, 811 : 177 - 188