Gallium Nitride and Silicon Transistors on 300 mm Silicon Wafers Enabled by 3-D Monolithic Heterogeneous Integration

被引:41
|
作者
Then, Han Wui [1 ]
Radosavljevic, Marko [1 ]
Jun, Kimin [1 ]
Koirala, Pratik [1 ]
Krist, Brian [1 ]
Talukdar, Tushar [1 ]
Thomas, Nicole [1 ]
Fischer, Paul [1 ]
机构
[1] Intel Corp, Components Res, Technol Dev, Hillsboro, OR 97124 USA
关键词
300 mm silicon; 3-D monolithic integration; gallium nitride; high-k dielectric; silicon CMOS; DEVICES; HEMTS;
D O I
10.1109/TED.2020.3034076
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate industry's first 300 mm GaN transistor technology and 3-D monolithic heterogeneous integration with Si transistors, enabled by 300 mm GaN metal-organic chemical vapor deposition (MOCVD) epitaxy and 300 mm 3-D layer transfer. The 300 mm GaN technology is a high-k dielectric enhancement-mode GaN nMOS transistor technology on Si(111) substrate. It is capable of excellent characteristics and figure-of-merits (FOM) for realizing energy-efficient, compact power-delivery and RF front-end components such as power-amplifiers, low-noise amplifiers, and RF-switches. Our GaN nMOS transistors show e-mode operation with: 1) high I-D,I-max = 1.5 mA/mu m; 2) low R-ON of 610 Omega - mu m (L-G = 50 nm); 3) low I-OFF of 100 pA/mu m (L-G = 180 nm), which are significant improvements over GaN HEMT; 4) excellent RF performance: f(T) = 190 GHz, f(MAX) = 300 GHz, power-added efficiency (PAE) = 56% (L-G = 50 nm) at mmwave frequency 28 GHz, and PAE = 77% at 5 GHz (L-G = 180 nm), significantly better than industry-standardGaAs and Si RF transistors; 5) good RF-switch FOM, RONCOFF = 110 fs; and 6) low noise figure, NFmin = 1.36 dB (f = 28 GHz) and 0.4 dB (f = 5 GHz), all at SoC-compatible voltages. We further demonstrate GaN transistor innovations all integrated on 300 mm Si(111) wafer, including depletion-mode GaN nMOS transistor with high I-D = 1.8 mA/mu m; GaN Schottky gate transistor producing high saturated power of 20 dBm (80 mu m width) with peak PAE = 57% at 28 GHz; low leakage compact cascode and multigate GaN transistors; and GaN Schottky diodes with ultralow C-OFF for electrostatic discharge (ESD) protection. The layer-transferred Si transistors, monolithically stacked on top of the GaN transistors by 300 mm 3-D layer transfer, show high drive current performance: 1.0 mA/mu m (Si nMOS) and 0.5 mA/mu m (Si pMOS). Such a monolithic 3-D Monolithic integration of GaN and Si transistors enables full integration of energy-efficient, truly compact power delivery and RF solutionswith CMOS digital signal processing, logic computation and control, memory, and analog circuitries.
引用
收藏
页码:5306 / 5314
页数:9
相关论文
共 50 条
  • [1] GaN and Si Transistors on 300mm Si(111) enabled by 3D Monolithic Heterogeneous Integration
    Han Wui Then
    Radosavljevic, M.
    Agababov, P.
    Ban, I
    Bristol, R.
    Chandhok, M.
    Chouksey, S.
    Holybee, B.
    Huang, C. Y.
    Krist, B.
    Jun, K.
    Koirala, P.
    Lin, K.
    Michaelos, T.
    Paul, R.
    Peck, J.
    Rachmady, W.
    Staines, D.
    Talukdar, T.
    Thomas, N.
    Tronic, T.
    Fischer, P.
    Hafez, W.
    2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,
  • [2] 3-D Integration of Silicon Nitride on Silicon-on-Insulator Platform
    Li, Qing
    Eftekhar, Ali A.
    Atabaki, Amir H.
    Adibi, Ali
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [3] Preparation of silicon-on-gallium arsenide wafers for monolithic optoelectronic integration
    London, JM
    Loomis, AH
    Ahadian, JF
    Fonstad, CG
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (08) : 958 - 960
  • [4] Monolithic integration of GaAs p-i-n photodetectors grown on 300 mm silicon wafers
    Mehdi, H.
    Martin, M.
    David, S.
    Hartmann, J. M.
    Moeyaert, J.
    Touraton, M. L.
    Jany, C.
    Virot, L.
    Da Fonseca, J.
    Coignus, J.
    Blachier, D.
    Baron, T.
    AIP ADVANCES, 2020, 10 (12)
  • [5] Sustaining the Silicon Revolution from 3-D Transistors to 3-D Integration
    Liu, Tsu-Jae King
    Zheng, Peng
    Connelly, Daniel
    Kato, Kimihiko
    Nguyen, Robert
    Qian, Chuang
    Peschot, Alexis
    2015 IEEE SOI-3D-SUBTHRESHOLD MICROELECTRONICS TECHNOLOGY UNIFIED CONFERENCE (S3S), 2015,
  • [6] Silicon compatible optical interconnect and monolithic 3-D integration
    Saraswat, Krishna C.
    2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
  • [7] Monolithic 3-D silicon photonics
    Koonath, P
    Indukuri, T
    Jalali, B
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (04) : 1796 - 1804
  • [8] First Monolithic Integration of 3D Complementary FET (CFET) on 300mm Wafers
    Subramanian, S.
    Hosseini, M.
    Chiarella, T.
    Sarkar, S.
    Schuddinck, P.
    Chan, B. T.
    Radisic, D.
    Mannaert, G.
    Hikavyy, A.
    Rosseel, E.
    Sebaai, F.
    Peter, A.
    Hopf, T.
    Morin, P.
    Wang, S.
    Devriendt, K.
    Batuk, D.
    Martinez, G. T.
    Veloso, A.
    Litta, E. Dentoni
    Baudot, S.
    Siew, Y. K.
    Zhou, X.
    Briggs, B.
    Capogreco, E.
    Hung, J.
    Koret, R.
    Spessot, A.
    Ryckaert, J.
    Demuynck, S.
    Horiguchi, N.
    Boemmels, J.
    2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,
  • [9] Sequential Lateral Solidification of Silicon Thin Films on Cu BEOL-Integrated Wafers for Monolithic 3-D Integration
    Carta, Fabio
    Gates, Stephen M.
    Limanov, Alexander B.
    Im, James S.
    Edelstein, Daniel C.
    Kymissis, Ioannis
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) : 3887 - 3891
  • [10] Advances in Research on 300mm Gallium Nitride-on-Si(111) NMOS Transistor and Silicon CMOS Integration
    Then, Han Wui
    Radosavljevic, M.
    Desai, N.
    Ehlert, R.
    Hadagali, V
    Jun, K.
    Koirala, P.
    Minutillo, N.
    Kotlyar, R.
    Oni, A.
    Qayyum, M.
    Rode, J.
    Sandford, J.
    Talukdar, T.
    Thomas, N.
    Vora, H.
    Wallace, P.
    Weiss, M.
    Weng, X.
    Fischer, P.
    2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,