Bound on the diameter of metacyclic groups

被引:0
|
作者
Rajeevsarathy, Kashyap [1 ]
Sarkar, Siddhartha [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal Bypass Rd, Bhopal 462066, Madhya Pradesh, India
关键词
Split metacyclic groups; diameter; finite rings; finite fields; CAYLEY-GRAPHS;
D O I
10.1142/S0219498820502199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(m,n,k) = Z(m) proportional to(k) Z(n) be the split metacyclic group, where k is a unit modulo n. We derive an upper bound for the diameter of G(m,n,k) using an arithmetic parameter called the weight, which depends on n, k, and the order of k. As an application, we show how this would determine a bound on the diameter of an arbitrary metacyclic group.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] GENERALIZATION OF THE DIAMETER BOUND OF LIEBECK AND SHALEV FOR FINITE SIMPLE GROUPS
    Maroti, A.
    Pyber, L.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 350 - 359
  • [42] An improved diameter bound for finite simple groups of Lie type
    Halasi, Zoltan
    Maroti, Attila
    Pyber, Laszlo
    Qiao, Youming
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (04) : 645 - 657
  • [43] A generalization of the diameter bound of Liebeck and Shalev for finite simple groups
    A. Maróti
    L. Pyber
    Acta Mathematica Hungarica, 2021, 164 : 350 - 359
  • [44] Good codes from metacyclic groups
    Assuena, Samir
    Milies, Cesar Polcino
    RINGS, MODULES AND CODES, 2019, 727 : 39 - 47
  • [45] GROTHENDIECK RING OF CERTAIN METACYCLIC GROUPS
    SANTAPIE.JJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A77 - &
  • [46] The Conjugate and Generalized Conjugacy Class Graphs for Metacyclic 3-Groups and Metacyclic 5-Groups
    Zamri, Siti Norziahidayu Amzee
    Sarmin, Nor Haniza
    El-Sanfaz, Mustafa Anis
    4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS4): MATHEMATICAL SCIENCES: CHAMPIONING THE WAY IN A PROBLEM BASED AND DATA DRIVEN SOCIETY, 2017, 1830
  • [47] Fibonacci lengths for certain metacyclic groups
    Campbell, CM
    Campbell, PP
    Doostie, H
    Robertson, EF
    ALGEBRA COLLOQUIUM, 2004, 11 (02) : 215 - 222
  • [48] THE NONORIENTABLE GENUS OF SOME METACYCLIC GROUPS
    PISANSKI, T
    TUCKER, TW
    WITTE, D
    COMBINATORICA, 1992, 12 (01) : 77 - 87
  • [49] A classification of metacyclic 2-groups
    Xu, MY
    Zhang, QH
    ALGEBRA COLLOQUIUM, 2006, 13 (01) : 25 - 34
  • [50] On the automorphism groups of rational group algebras of metacyclic groups
    Herman, A
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (07) : 2085 - 2097