Let G(m,n,k) = Z(m) proportional to(k) Z(n) be the split metacyclic group, where k is a unit modulo n. We derive an upper bound for the diameter of G(m,n,k) using an arithmetic parameter called the weight, which depends on n, k, and the order of k. As an application, we show how this would determine a bound on the diameter of an arbitrary metacyclic group.
机构:
Univ Sao Paulo, Inst Matemat & Estatist, BR-05315970 Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Matemat & Estatist, BR-05315970 Sao Paulo, SP, Brazil
Juriaans, SO
Sehgal, SK
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Matemat & Estatist, BR-05315970 Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Matemat & Estatist, BR-05315970 Sao Paulo, SP, Brazil
Sehgal, SK
Groups, Rings and Group Rings,
2006,
248
: 253
-
262