PARITY VERTEX COLORINGS OF BINOMIAL TREES

被引:4
|
作者
Gregor, Petr [1 ]
Skrekovski, Riste [2 ]
机构
[1] Charles Univ Prague, Dept Theoret Comp Sci & Math Log, Malostranske Nam 25, CR-11800 Prague, Czech Republic
[2] Univ Ljubljana, Dept Math, Ljubljana 1000, Slovenia
关键词
binomial tree; parity coloring; vertex ranking;
D O I
10.7151/dmgt.1595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show for every k >= 1 that the binomial tree of order 3k has a vertex-coloring with 2k + 1 colors such that every path contains some color odd number of times. This disproves a conjecture from [1] asserting that for every tree T the minimal number of colors in a such coloring of T is at least the vertex ranking number of T minus one.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 50 条
  • [41] Monochromatic Vertex-Disconnection Colorings of Graphs
    Yanhong Gao
    Xueliang Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1621 - 1640
  • [42] Johnson binomial trees
    Simonato, Jean-Guy
    QUANTITATIVE FINANCE, 2011, 11 (08) : 1165 - 1176
  • [43] Vertex distinguishing colorings of graphs with Δ (G)=2
    Balister, PN
    Bollobás, B
    Schelp, RH
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 17 - 29
  • [44] On The Defining Number For Vertex Colorings Of A Family Of Graphs
    Sharebaf, Sadegh Rahimi
    Rad, Nader Jafari
    APPLIED MATHEMATICS E-NOTES, 2011, 11 : 118 - 124
  • [45] Adjacent vertex distinguishing edge-colorings
    Balister, P. N.
    Gyori, E.
    Lehel, J.
    Schelp, R. H.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) : 237 - 250
  • [46] Vertex-distinguishing edge colorings of graphs
    Ballister, PN
    Riordan, OM
    Schelp, RH
    JOURNAL OF GRAPH THEORY, 2003, 42 (02) : 95 - 109
  • [47] Vertex-equalized edge-colorings
    Erzurumluoǧlu, Aras
    Rodger, C.A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2017, 100 : 125 - 132
  • [48] Union vertex-distinguishing edge colorings
    Kittipassorn, Teeradej
    Sanyatit, Preechaya
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [49] IMPLIED BINOMIAL TREES
    RUBINSTEIN, M
    JOURNAL OF FINANCE, 1994, 49 (03): : 1094 - 1095
  • [50] Oriented vertex and arc colorings of outerplanar graphs
    Pinlou, Alexandre
    Sopena, Eric
    INFORMATION PROCESSING LETTERS, 2006, 100 (03) : 97 - 104