Johnson binomial trees

被引:3
|
作者
Simonato, Jean-Guy [1 ]
机构
[1] HEC Montreal, Serv Enseignement Finance, Montreal, PQ H3T 2A7, Canada
关键词
Edgeworth binomial tree; Skewness; Kurtosis; Johnson distribution; American option; Jump diffusion; GARCH; VALUATION; AVERAGE; OPTIONS; PRICES; GARCH;
D O I
10.1080/14697680902950821
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Rubinstein developed a binomial lattice technique for pricing European and American derivatives in the context of skewed and leptokurtic asset return distributions. A drawback of this approach is the limited set of skewness and kurtosis pairs for which valid stock return distributions are possible. A solution to this problem is proposed here by extending Rubinstein's Edgeworth tree idea to the case of the Johnson system of distributions which is capable of accommodating all possible skewness and kurtosis pairs. Numerical examples showing the performance of the Johnson tree to approximate the prices of European and American options in Merton's jump diffusion framework and Duan's GARCH framework are examined.
引用
收藏
页码:1165 / 1176
页数:12
相关论文
共 50 条
  • [1] Binomial trees are graceful
    Ragukumar, P.
    Sethuraman, G.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 632 - 636
  • [2] IMPLIED BINOMIAL TREES
    RUBINSTEIN, M
    JOURNAL OF FINANCE, 1994, 49 (03): : 1094 - 1095
  • [3] Binomial trees as dynamical systems
    Galeeva, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 292 (1-4) : 519 - 535
  • [4] JOHNSON AND THE TREES OF SCOTLAND
    WALKER, RG
    PHILOLOGICAL QUARTERLY, 1982, 61 (01): : 98 - 101
  • [5] Evergreen Trees: The Likelihood Ratio Method for Binomial and Trinomial Trees
    Davis, Tom P.
    JOURNAL OF DERIVATIVES, 2021, 29 (01): : 49 - 69
  • [6] PARITY VERTEX COLORINGS OF BINOMIAL TREES
    Gregor, Petr
    Skrekovski, Riste
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 177 - 180
  • [7] Binomial identities generated by counting spanning trees
    Porter, T. D.
    ARS COMBINATORIA, 2007, 82 : 159 - 163
  • [8] Embedding of binomial trees in hypercubes with link faults
    Wu, J
    Fernandez, EB
    Luo, YQ
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1998, 54 (01) : 59 - 74
  • [9] Implied Binomial Trees with Cubic Spline Smoothing
    Tian, Yisong S.
    JOURNAL OF DERIVATIVES, 2015, 22 (03): : 40 - 55
  • [10] Secure Group Communication Using Binomial Trees
    Aparna, R.
    Amberker, B. B.
    Pola, Divya
    Bathia, Pranjal
    2009 IEEE 3RD INTERNATIONAL SYMPOSIUM ON ADVANCED NETWORKS AND TELECOMMUNICATION SYSTEMS (ANTS 2009), 2009, : 142 - +