Intermodulation Interference Detection in 6G Networks: A Machine Learning Approach

被引:1
|
作者
Mismar, Faris B. [1 ]
机构
[1] Nokia Bell Labs Consulting, Murray Hill, NJ 07974 USA
关键词
intermodulation; interference; detection; real-time; machine learning; SG; 6G; edge computing;
D O I
10.1109/VTC2022-Spring54318.2022.9860900
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper demonstrates the use of machine learning to detect the presence of intermodulation interference across several wireless carriers. We show a salient characteristic of intermodulation interference and propose a machine learning based algorithm that detects the presence of intermodulation interference through the use of supervised learning. This algorithm can use the radio access network intelligent controller or the sixth generation of wireless communication (6G) edge node as a means of computation. Our proposed algorithm runs in linear time in the number of resource blocks, making it a suitable radio resource management application in 6G.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] From 5G to 6G Networks: A Survey on AI-Based Jamming and Interference Detection and Mitigation
    Lohan, Poonam
    Kantarci, Burak
    Amine Ferrag, Mohamed
    Tihanyi, Norbert
    Shi, Yi
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 3920 - 3974
  • [32] URLLC in Beyond 5G and 6G Networks: An Interference Management Perspective
    Siddiqui, Maraj Uddin Ahmed
    Abumarshoud, Hanaa
    Bariah, Lina
    Muhaidat, Sami
    Imran, Muhammad Ali
    Mohjazi, Lina
    IEEE ACCESS, 2023, 11 : 54639 - 54663
  • [33] An Inter-disciplinary Modelling Approach in Industrial 5G/6G and Machine Learning Era
    Mohamed, Abdelrahim
    Ruan, Hang
    Abdelwahab, Mohamed Heshmat Hassan
    Dorneanu, Bogdan
    Xiao, Pei
    Arellano-Garcia, Harvey
    Gao, Yang
    Tafazolli, Rahim
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
  • [34] Hybrid Deep Learning Approach for 6G MIMO Channel Estimation and Interference Alignment HetNet Environments
    Subramanian, Ranjith
    Jayarin, Jesu
    Chandrasekar, Arumugam
    TRAITEMENT DU SIGNAL, 2023, 40 (05) : 1951 - 1960
  • [35] Optimization Design for Federated Learning in Heterogeneous 6G Networks
    Luo, Bing
    Han, Pengchao
    Sun, Peng
    Ouyang, Xiaomin
    Huang, Jianwei
    Ding, Ningning
    IEEE NETWORK, 2023, 37 (02): : 38 - 43
  • [36] Utilizing Causal Learning for Cognitive Management of 6G Networks
    Karaca, Mehmet
    Sadasivan, Jishnu
    Baktir, Ahmet Cihat
    Palaios, Alexandros
    Zahemszky, Andras
    2024 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING FOR COMMUNICATION AND NETWORKING, ICMLCN 2024, 2024, : 234 - 239
  • [37] Organic 6G Networks
    Corici, Marius
    Troudt, Eric
    Magedanz, Thomas
    Schotten, Hans
    2022 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT (EUCNC/6G SUMMIT), 2022, : 541 - 546
  • [38] On the Dependability of 6G Networks
    Ahmad, Ijaz
    Rodriguez, Felipe
    Huusko, Jyrki
    Seppanen, Kari
    ELECTRONICS, 2023, 12 (06)
  • [39] Addressing the CQI feedback delay in 5G/6G networks via machine learning and evolutionary computing
    Balieiro A.
    Dias K.
    Guarda P.
    Intelligent and Converged Networks, 2022, 3 (03): : 271 - 281
  • [40] Patient-Centric HetNets Powered by Machine Learning and Big Data Analytics for 6G Networks
    Hadi, Mohammed S.
    Lawey, Ahmed Q.
    El-Gorashi, Taisir E. H.
    Elmirghani, Jaafar M. H.
    IEEE ACCESS, 2020, 8 (85639-85655): : 85639 - 85655