Optimization Design for Federated Learning in Heterogeneous 6G Networks

被引:6
|
作者
Luo, Bing [1 ]
Han, Pengchao [4 ,5 ]
Sun, Peng [3 ]
Ouyang, Xiaomin [2 ]
Huang, Jianwei [4 ,5 ]
Ding, Ningning [6 ]
机构
[1] Duke Kunshan Univ, Suzhou, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[3] Hunan Univ, Changsha 410082, Hunan, Peoples R China
[4] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[5] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
[6] Northwestern Univ, Evanston, IL USA
来源
IEEE NETWORK | 2023年 / 37卷 / 02期
基金
中国国家自然科学基金;
关键词
6G mobile communication; Human computer interaction; Data centers; Federated learning; Training data; Prototypes; Network resource management; 5G mobile communication; Internet of Things; Heterogeneous networks;
D O I
10.1109/MNET.006.2200437
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid advancement of 5G networks, billions of smart Internet of Things (IoT) devices along with an enormous amount of data are generated at the network edge. While still at an early age, it is expected that the evolving 6G network will adopt advanced artificial intelligence (AI) technologies to collect, transmit, and learn this valuable data for innovative applications and intelligent services. However, traditional machine learning (ML) approaches require centralizing the training data in the data center or cloud, raising serious user-privacy concerns. Federated learning, as an emerging distributed AI paradigm with privacy-preserving nature, is anticipated to be a key enabler for achieving ubiquitous AI in 6G networks. However, there are several system and statistical heterogeneity challenges for effective and efficient FL implementation in 6G networks. In this article, we investigate the optimization approaches that can effectively address the challenging heterogeneity issues from three aspects: incentive mechanism design, network resource management, and personalized model optimization. We also present some open problems and promising directions for future research.
引用
收藏
页码:38 / 43
页数:6
相关论文
共 50 条
  • [1] Native Support for Federated Learning Hyper-Parameter Optimization in 6G Networks
    Khan, Mohammad Bariq
    An, Xueli
    Dressler, Falko
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [2] Communication efficiency optimization of federated learning for computing and network convergence of 6G networks
    Cai, Yizhuo
    Lei, Bo
    Zhao, Qianying
    Peng, Jing
    Wei, Min
    Zhang, Yushun
    Zhang, Xing
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2024, 25 (05) : 713 - 727
  • [3] Tensor-Empowered Lightweight Representations for Personalized Federated Learning in Heterogeneous 6G Networks
    Zhao, Ruonan
    Yang, Laurence T.
    Liu, Debin
    Yang, Xiangli
    Wang, Meiqi
    IEEE NETWORK, 2025, 39 (02): : 115 - 123
  • [4] Federated Learning for 6G Networks: Navigating Privacy Benefits and Challenges
    Sandeepa, Chamara
    Zeydan, Engin
    Samarasinghe, Tharaka
    Liyanage, Madhusanka
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 90 - 129
  • [5] Federated Learning Meets Urban Opportunistic Crowdsensing in 6G Networks: Opportunities, Challenges, and Optimization Potentials
    Zhang, Wenjun
    Liu, Xiaoli
    Zhu, Chao
    Varjonen, Samu
    Wang, Fangxin
    Tarkoma, Sasu
    IEEE NETWORK, 2025, 39 (02): : 36 - 43
  • [6] HCP: Heterogeneous Computing Platform for Federated Learning Based Collaborative Content Caching Towards 6G Networks
    Fadlullah, Zubair Md
    Kato, Nei
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (01) : 112 - 123
  • [7] Federated Learning in Massive MIMO 6G Networks: Convergence Analysis and Communication-Efficient Design
    Mu, Yuchen
    Garg, Navneet
    Ratnarajah, Tharmalingam
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (06): : 4220 - 4234
  • [8] TOWARD ENERGY-EFFICIENT DISTRIBUTED FEDERATED LEARNING FOR 6G NETWORKS
    Khowaja, Sunder Ali
    Dev, Kapal
    Khowaja, Parus
    Bellavista, Paolo
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (06) : 34 - 40
  • [9] Designing Robust 6G Networks with Bimodal Distribution for Decentralized Federated Learning
    Wang, Xu
    Chen, Yuanzhu
    Dobre, Octavia A.
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [10] Federated Deep Reinforcement Learning for Open RAN Slicing in 6G Networks
    Abouaomar, Amine
    Taik, Afaf
    Filali, Abderrahime
    Cherkaoui, Soumaya
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (02) : 126 - 132