Borodin-Kostochka's conjecture on (P5, C4)-free graphs

被引:0
|
作者
Gupta, Uttam K. [1 ]
Pradhan, D. [1 ]
机构
[1] Indian Inst Technol ISM, Dept Math & Comp, Dhanbad, Bihar, India
关键词
Coloring; Chromatic bound; Borodin-Kostochka's conjecture; (P-5; C-4)-free graphs; CHROMATIC NUMBER; DELTA; CHI;
D O I
10.1007/s12190-020-01419-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Brooks' theorem states that for a graph G, if Delta(G) >= 3, then chi(G) <= max{Delta(G),omega(G)}. Borodin and Kostochka conjectured a result strengthening Brooks' theorem, stated as, if Delta (G) >= 9, then chi (G) <= max {Delta(G)-1,omega(G)}. This conjecture is still open for general graphs. In this paper, we show that the conjecture is true for graphs having no induced path on five vertices and no induced cycle on four vertices.
引用
收藏
页码:877 / 884
页数:8
相关论文
共 50 条
  • [1] Borodin-Kostochka's Conjecture on {P2 ∨ P3, C4}-Free Graphs
    Lan, Kaiyang
    Liu, Feng
    Zhou, Yidong
    GRAPHS AND COMBINATORICS, 2024, 40 (06)
  • [2] The Borodin-Kostochka Conjecture for Some {P2 ∪P3}-Free Graphs
    Wang, Hongyang
    SSRN, 2023,
  • [3] Borodin-Kostochka Conjecture Holds for Odd-Hole-Free Graphs
    Chen, Rong
    Lan, Kaiyang
    Lin, Xinheng
    Zhou, Yidong
    GRAPHS AND COMBINATORICS, 2024, 40 (02)
  • [4] The Borodin-Kostochka conjecture for graphs containing a doubly critical edge
    Rabern, Landon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [5] Borodin-Kostochka conjecture holds for K 1, 3-free graphs
    Lan, Kaiyang
    Lin, Xinheng
    DISCRETE APPLIED MATHEMATICS, 2024, 356 : 263 - 268
  • [6] The list version of the Borodin-Kostochka conjecture for graphs with large maximum degree
    Choi, Ilkyoo
    Kierstead, H. A.
    Rabern, Landon
    DISCRETE MATHEMATICS, 2023, 346 (11)
  • [7] Borodin–Kostochka Conjecture Holds for Odd-Hole-Free Graphs
    Rong Chen
    Kaiyang Lan
    Xinheng Lin
    Yidong Zhou
    Graphs and Combinatorics, 2024, 40
  • [8] Borodin–Kostochka’s conjecture on (P5,C4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_5,C_4)$$\end{document}-free graphs
    Uttam K. Gupta
    D. Pradhan
    Journal of Applied Mathematics and Computing, 2021, 65 (1-2) : 877 - 884
  • [9] On (P5, diamond)-free graphs
    Arbib, C
    Mosca, R
    DISCRETE MATHEMATICS, 2002, 250 (1-3) : 1 - 22
  • [10] Coloring of (P5, 4-wheel)-free graphs
    Char, Arnab
    Karthick, T.
    DISCRETE MATHEMATICS, 2022, 345 (05)