The Borodin-Kostochka Conjecture for Some {P2 ∪P3}-Free Graphs

被引:0
|
作者
Wang, Hongyang [1 ]
机构
[1] Department of Mathematics, East China Normal University, Shanghai,200241, China
来源
SSRN | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Graph theory - Graphic methods
引用
收藏
相关论文
共 50 条
  • [1] Borodin-Kostochka's Conjecture on {P2 ∨ P3, C4}-Free Graphs
    Lan, Kaiyang
    Liu, Feng
    Zhou, Yidong
    GRAPHS AND COMBINATORICS, 2024, 40 (06)
  • [2] Borodin-Kostochka's conjecture on (P5, C4)-free graphs
    Gupta, Uttam K.
    Pradhan, D.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 65 (1-2) : 877 - 884
  • [3] Borodin-Kostochka conjecture holds for K 1, 3-free graphs
    Lan, Kaiyang
    Lin, Xinheng
    DISCRETE APPLIED MATHEMATICS, 2024, 356 : 263 - 268
  • [4] Borodin-Kostochka Conjecture Holds for Odd-Hole-Free Graphs
    Chen, Rong
    Lan, Kaiyang
    Lin, Xinheng
    Zhou, Yidong
    GRAPHS AND COMBINATORICS, 2024, 40 (02)
  • [5] The Borodin-Kostochka conjecture for graphs containing a doubly critical edge
    Rabern, Landon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [6] The list version of the Borodin-Kostochka conjecture for graphs with large maximum degree
    Choi, Ilkyoo
    Kierstead, H. A.
    Rabern, Landon
    DISCRETE MATHEMATICS, 2023, 346 (11)
  • [7] On the Chromatic Number of Some (P3 ∨ P2)-Free Graphs
    Li, Rui
    Li, Jinfeng
    Wu, Di
    MATHEMATICS, 2023, 11 (19)
  • [8] The ?-Boundedness of (P2?P3)-Free Graphs
    Wang, Xiao
    Zhang, Donghan
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [9] Colouring of (P3 ∨ P2)-free graphs
    Bharathi, Arpitha P.
    Choudum, Sheshayya A.
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 97 - 107
  • [10] Linear χ-binding functions for some classes of (P3∨P2)-free graphs
    Prashant, Athmakoori
    Francis, P.
    Raj, S. Francis
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (02) : 152 - 160