Linear χ-binding functions for some classes of (P3∨P2)-free graphs

被引:1
|
作者
Prashant, Athmakoori [1 ]
Francis, P. [2 ]
Raj, S. Francis [1 ]
机构
[1] Pondicherry Univ, Dept Math, Pondicherry 605014, India
[2] VIT AP Univ, Dept Math, SAS, Amaravati, Andhra Pradesh, India
关键词
Chromatic number; chi-binding function; (P-3 boolean OR P-2)-free graphs and Perfect graphs; CHROMATIC NUMBER; BOUNDS;
D O I
10.1080/09728600.2024.2308113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The class of 2K(2)-free graphs has been well studied in the past. In the paper "On the chromatic number of 2K(2)-free graphs, Discrete Applied Mathematics, 253 (2019), 14-24", it was shown that the class of {2K(2),2K(1)+Kp}-free graphs and {2K(2),(K-1 boolean OR K-2)+Kp}-free graphs admit a linear chi-binding function. In this paper, we study some subclasses of (P-3 boolean OR P-2)-free graphs which is a superclass of 2K(2)-free graphs. We show that {P-3 boolean OR P(2,)2K(1)+K-p}-free graphs and {P3 boolean OR P2,(K-1 boolean OR K-2)+K-p}-free graphs also admit linear chi-binding functions. In addition, we give a tight chi-binding function for {P-3 boolean OR P-2,HVN}-free graphs and improve the chi-bound for {P-3 boolean OR P-2,diamond}-free graphs with omega = 4.
引用
收藏
页码:152 / 160
页数:9
相关论文
共 50 条
  • [1] On the Chromatic Number of Some (P3 ∨ P2)-Free Graphs
    Li, Rui
    Li, Jinfeng
    Wu, Di
    MATHEMATICS, 2023, 11 (19)
  • [2] The ?-Boundedness of (P2?P3)-Free Graphs
    Wang, Xiao
    Zhang, Donghan
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [3] Colouring of (P3 ∨ P2)-free graphs
    Bharathi, Arpitha P.
    Choudum, Sheshayya A.
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 97 - 107
  • [4] The Borodin-Kostochka Conjecture for Some {P2 ∪P3}-Free Graphs
    Wang, Hongyang
    SSRN, 2023,
  • [5] Hamiltonian cycles in tough (P2 ∨ P3)-free graphs
    Shan, Songling
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (01): : 1 - 16
  • [6] CERTAIN CLASSES OF P3 AND P2 MAPPING
    DRAGNEV, MV
    RYZHKOV, VV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1988, (12): : 28 - 35
  • [7] Optimal Chromatic Bound for (P3 ∨ P2, House)-Free Graphs
    Li, Rui
    Li, Jinfeng
    Wu, Di
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [8] On the {P2,P3}-Factor of Cubic Graphs
    缑葵香
    孙良
    Journal of Beijing Institute of Technology(English Edition), 2005, (04) : 445 - 448
  • [9] P2, P3, P4-free linear forests are antimagic
    Shang, Jen-Ling
    UTILITAS MATHEMATICA, 2016, 101 : 13 - 22
  • [10] The LexCycle on (P2 ∨ P3)over-bar-free Cocomparability Graphs
    Gao, Xiao-Lu
    Xu, Shou-Jun
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2020, 22 (04):