Brooks' theorem states that for a graph G, if Delta(G) >= 3, then chi(G) <= max{Delta(G),omega(G)}. Borodin and Kostochka conjectured a result strengthening Brooks' theorem, stated as, if Delta (G) >= 9, then chi (G) <= max {Delta(G)-1,omega(G)}. This conjecture is still open for general graphs. In this paper, we show that the conjecture is true for graphs having no induced path on five vertices and no induced cycle on four vertices.
机构:
College of Computer Science, Nankai University, Tianjin,300350, ChinaCollege of Computer Science, Nankai University, Tianjin,300350, China
Huang, Shenwei
Li, Zeyu
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Key Laboratory of Network and Data Security Technology, Nankai University, Tianjin,300071, ChinaCollege of Computer Science, Nankai University, Tianjin,300350, China
机构:
Univ Prince Edward Isl, Sch Math & Computat Sci, 550 Univ Ave, Charlottetown, PE C1A 4P3, CanadaUniv Prince Edward Isl, Sch Math & Computat Sci, 550 Univ Ave, Charlottetown, PE C1A 4P3, Canada
Cameron, Ben
Hoang, Chinh
论文数: 0引用数: 0
h-index: 0
机构:
Wilfrid Laurier Univ, Dept Phys & Comp Sci, 75 Univ Ave W, Waterloo, ON N2L 3C5, CanadaUniv Prince Edward Isl, Sch Math & Computat Sci, 550 Univ Ave, Charlottetown, PE C1A 4P3, Canada