Monte Carlo dynamics in global optimization

被引:6
|
作者
Chen, CN [1 ]
Chou, CI
Hwang, CR
Kang, J
Lee, TK
Li, SP
机构
[1] Acad Sinica, Inst Phys, Taipei, Taiwan
[2] Acad Sinica, Ctr Comp, Taipei 115, Taiwan
[3] Acad Sinica, Inst Math, Taipei, Taiwan
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevE.60.2388
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Several very different optimization problems are studied by using the fixed-temperature Monte Carlo dynamics and found to share many common features. The most surprising result is that the cost function of these optimization problems itself is a very good stochastic variable to describe the complicated Monte Carlo processes. A multidimensional problem can therefore be mapped into a one-dimensional diffusion problem. This problem is either solved by direct numerical simulation or by using the Fokker-Planck equations. Above certain temperatures, the first passage time distribution functions of the original Monte Carlo processes are reproduced. At low temperatures, the first passage time has a path dependence and the single-stochastic-variable description is no longer valid. This analysis also provides a simple method to characterize the energy landscapes. [S1063-651X(99)06808-7].
引用
收藏
页码:2388 / 2393
页数:6
相关论文
共 50 条
  • [41] Backward Monte Carlo for probabilistic dynamics
    Tombuyses, B
    DeLuca, PR
    Smidts, C
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 493 - 505
  • [42] QUANTUM MONTE-CARLO DYNAMICS
    DOLL, JD
    BECK, TL
    FREEMAN, DL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1989, 198 : 169 - PHYS
  • [43] MONTE CARLO SIMULATION FOR SOOT DYNAMICS
    Zhou, Kun
    THERMAL SCIENCE, 2012, 16 (05): : 1391 - 1394
  • [44] Monte Carlo simulations of opinion dynamics
    Fortunato, S
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2005, 26 : 301 - 305
  • [45] CHAOTIC DYNAMICS AND MONTE CARLO MODELLING
    Froeschle, C.
    Rickman, H.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1988, 45 (1-3): : 93 - 98
  • [46] Monte Carlo vs. Fuzzy Monte Carlo Simulation for Uncertainty and Global Sensitivity Analysis
    Kim, Young-Jin
    SUSTAINABILITY, 2017, 9 (04):
  • [47] A Bayesian Monte Carlo Approach to Global Illumination
    Brouillat, Jonathan
    Bouville, Christian
    Loos, Brad
    Hansen, Charles
    Bouatouch, Kadi
    COMPUTER GRAPHICS FORUM, 2009, 28 (08) : 2315 - 2329
  • [48] Monte Carlo measurement of the global persistence exponent
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (93):
  • [49] Monte Carlo measurement of the global persistence exponent
    Universität - GH Siegen, D-57068 Siegen, Germany
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 233 (1-2): : 93 - 98
  • [50] Global multipath Monte Carlo algorithms for radiosity
    Sbert, M
    Pueyo, X
    Neumann, L
    Pergathofer, W
    VISUAL COMPUTER, 1996, 12 (02): : 47 - 61