Monte Carlo dynamics in global optimization

被引:6
|
作者
Chen, CN [1 ]
Chou, CI
Hwang, CR
Kang, J
Lee, TK
Li, SP
机构
[1] Acad Sinica, Inst Phys, Taipei, Taiwan
[2] Acad Sinica, Ctr Comp, Taipei 115, Taiwan
[3] Acad Sinica, Inst Math, Taipei, Taiwan
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 02期
关键词
D O I
10.1103/PhysRevE.60.2388
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Several very different optimization problems are studied by using the fixed-temperature Monte Carlo dynamics and found to share many common features. The most surprising result is that the cost function of these optimization problems itself is a very good stochastic variable to describe the complicated Monte Carlo processes. A multidimensional problem can therefore be mapped into a one-dimensional diffusion problem. This problem is either solved by direct numerical simulation or by using the Fokker-Planck equations. Above certain temperatures, the first passage time distribution functions of the original Monte Carlo processes are reproduced. At low temperatures, the first passage time has a path dependence and the single-stochastic-variable description is no longer valid. This analysis also provides a simple method to characterize the energy landscapes. [S1063-651X(99)06808-7].
引用
收藏
页码:2388 / 2393
页数:6
相关论文
共 50 条
  • [31] USEFUL MONTE-CARLO OPTIMIZATION
    KJELLSTROM, G
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 69 (01) : 185 - 187
  • [32] Adaptive Monte Carlo Algorithm to Global Radio Resources Optimization in H-CRAN
    Schimuneck, Matias A. K.
    Kist, Maicon
    Rochol, Juergen
    Ribeiro-Teixeira, Ana Carolina
    Both, Cristiano Bonato
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [33] Adaptive nested Monte Carlo approach for multi-objective efficient global optimization
    Xu, Shengguan
    Tan, Jianfeng
    Zhang, Jiale
    Chen, Hongquan
    Gao, Yisheng
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (03) : 647 - 676
  • [34] Time dependent global optimization via Bayesian inference and Sequential Monte Carlo sampling
    Kopka, Piotr
    Wawrzynczak, Anna
    Borysiewicz, Mieczyslaw
    2013 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2013, : 363 - 370
  • [35] Dynamic weighting in Monte Carlo and optimization
    Wong, WH
    Liang, FM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) : 14220 - 14224
  • [36] An adaptively weighted stochastic gradient MCMC algorithm for Monte Carlo simulation and global optimization
    Deng, Wei
    Lin, Guang
    Liang, Faming
    STATISTICS AND COMPUTING, 2022, 32 (04)
  • [37] A flexible and adaptive grid algorithm for global optimization utilizing basin hopping Monte Carlo
    Paleico, Martin Leandro
    Behler, Joerg
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (09):
  • [38] Monte Carlo integration with adaptive variance selection for improved stochastic efficient global optimization
    Carraro, Felipe
    Lopez, Rafael Holdorf
    Fadel Miguel, Leandro Fleck
    Torii, Andre Jacomel
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (01) : 245 - 268
  • [39] Monte Carlo integration with adaptive variance selection for improved stochastic efficient global optimization
    Felipe Carraro
    Rafael Holdorf Lopez
    Leandro Fleck Fadel Miguel
    André Jacomel Torii
    Structural and Multidisciplinary Optimization, 2019, 60 : 245 - 268
  • [40] Iterative Monte Carlo for quantum dynamics
    Jadhao, Vikram
    Makri, Nancy
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (16):