Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative

被引:56
|
作者
Sweilam, Nasser Hassan [1 ]
Al-Mekhlafi, Seham Mahyoub [2 ]
Assiri, Taghreed [3 ]
Atangana, Abdon [4 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Sanaa Univ, Fac Educ, Dept Math, Sanaa, Yemen
[3] Umm Alqura Univ, Fac Sci, Dept Math, Mecca, Saudi Arabia
[4] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
关键词
Fractional-order derivatives; Mathematical cancer models; Anti-angiogenic therapy; Immunotherapy; Iterative optimal control method; The nonstandard two-step Lagrange interpolation method; 37N25; 49J15; 26A33; FINITE-DIFFERENCE SCHEMES; TUMOR; EQUATIONS; GROWTH; FORMULATION; TRENDS; IMPACT;
D O I
10.1186/s13662-020-02793-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, optimal control for a fractional-order nonlinear mathematical model of cancer treatment is presented. The suggested model is determined by a system of eighteen fractional differential equations. The fractional derivative is defined in the Atangana-Baleanu Caputo sense. Necessary conditions for the control problem are derived. Two control variables are suggested to minimize the number of cancer cells. Two numerical methods are used for simulating the proposed optimal system. The methods are the iterative optimal control method and the nonstandard two-step Lagrange interpolation method. In order to validate the theoretical results, numerical simulations and comparative studies are given.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Study on generalized fuzzy fractional human liver model with Atangana–Baleanu–Caputo fractional derivative
    Lalchand Verma
    Ramakanta Meher
    The European Physical Journal Plus, 137
  • [42] A NOTE ON CONTROLLABILITY OF NONINSTANTANEOUS IMPULSIVE ATANGANA-BALEANU-CAPUTO NEUTRAL FRACTIONAL INTEGRODIFFERENTIAL SYSTEMS
    Nisar, Kottakkaran Sooppy
    Vijayaraj, V.
    Valliammal, N.
    Logeswari, K.
    Ravichandran, C.
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (08)
  • [43] On Implicit Atangana-Baleanu-Caputo Fractional Integro-Differential Equations with Delay and Impulses
    Karthikeyann, Panjaiyan
    Poornima, Sadhasivam
    Karthikeyan, Kulandhaivel
    Promsakon, Chanon
    Sitthiwirattham, Thanin
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [44] Evolution of fractional mathematical model for drinking under Atangana-Baleanu Caputo derivatives
    Rahman, Mati Ur
    Arfan, Muhammad
    Shah, Zahir
    Alzahrani, Ebraheem
    PHYSICA SCRIPTA, 2021, 96 (11)
  • [45] A cardinal approach for nonlinear variable-order time fractional Schrodinger equation defined by Atangana-Baleanu-Caputo derivative
    Heydari, M. H.
    Atangana, A.
    CHAOS SOLITONS & FRACTALS, 2019, 128 : 339 - 348
  • [46] On a nonlocal implicit problem under Atangana–Baleanu–Caputo fractional derivative
    Abeer S. Alnahdi
    Mdi Begum Jeelani
    Mohammed S. Abdo
    Saeed M. Ali
    S. Saleh
    Boundary Value Problems, 2021
  • [47] On nonlinear pantograph fractional differential equations with Atangana–Baleanu–Caputo derivative
    Mohammed S. Abdo
    Thabet Abdeljawad
    Kishor D. Kucche
    Manar A. Alqudah
    Saeed M. Ali
    Mdi Begum Jeelani
    Advances in Difference Equations, 2021
  • [48] Investigation of monkeypox disease transmission with vaccination effects using fractional order mathematical model under Atangana-Baleanu Caputo derivative
    Bansal, Jatin
    Kumar, Amit
    Kumar, Anoop
    Khan, Aziz
    Abdeljawad, Thabet
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (01)
  • [49] Finite-Time Passivity for Atangana-Baleanu-Caputo Fractional-Order Systems with Nonlinear Perturbations
    Sau, Nguyen Huu
    Thanh, Nguyen Truong
    Huyen, Nguyen Thi Thanh
    Thuan, Mai Viet
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (12) : 6774 - 6787
  • [50] Application of the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to mathematical model of cancer chemotherapy effect
    Fabian Morales-Delgado, Victor
    Francisco Gomez-Aguilar, Jose
    Saad, Khaled
    Escobar Jimenez, Ricardo Fabricio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (04) : 1167 - 1193