Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative

被引:56
|
作者
Sweilam, Nasser Hassan [1 ]
Al-Mekhlafi, Seham Mahyoub [2 ]
Assiri, Taghreed [3 ]
Atangana, Abdon [4 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Sanaa Univ, Fac Educ, Dept Math, Sanaa, Yemen
[3] Umm Alqura Univ, Fac Sci, Dept Math, Mecca, Saudi Arabia
[4] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
关键词
Fractional-order derivatives; Mathematical cancer models; Anti-angiogenic therapy; Immunotherapy; Iterative optimal control method; The nonstandard two-step Lagrange interpolation method; 37N25; 49J15; 26A33; FINITE-DIFFERENCE SCHEMES; TUMOR; EQUATIONS; GROWTH; FORMULATION; TRENDS; IMPACT;
D O I
10.1186/s13662-020-02793-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, optimal control for a fractional-order nonlinear mathematical model of cancer treatment is presented. The suggested model is determined by a system of eighteen fractional differential equations. The fractional derivative is defined in the Atangana-Baleanu Caputo sense. Necessary conditions for the control problem are derived. Two control variables are suggested to minimize the number of cancer cells. Two numerical methods are used for simulating the proposed optimal system. The methods are the iterative optimal control method and the nonstandard two-step Lagrange interpolation method. In order to validate the theoretical results, numerical simulations and comparative studies are given.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Microbial coinfections in COVID-19: mathematical analysis using Atangana-Baleanu-Caputo type
    Vijayalakshmi, G. M.
    Besi, P. Roselyn
    Kalaivani, A.
    Sujitha, G. Infant
    Mahesh, S.
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (04) : 4097 - 4116
  • [32] Optimal control problems with Atangana-Baleanu fractional derivative
    Tajadodi, Haleh
    Khan, Aziz
    Francisco Gomez-Aguilar, Jose
    Khan, Hasib
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (01): : 96 - 109
  • [33] Fractional Analysis of Nonlinear Boussinesq Equation under Atangana-Baleanu-Caputo Operator
    Alyobi, Sultan
    Shah, Rasool
    Khan, Adnan
    Shah, Nehad Ali
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (11):
  • [34] RETRACTED: On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems (Retracted Article)
    Owolabi, Kolade M.
    Atangana, Abdon
    CHAOS, 2019, 29 (02)
  • [35] PIECEWISE OPTIMAL FRACTIONAL REPRODUCING KERNEL SOLUTION AND CONVERGENCE ANALYSIS FOR THE ATANGANA-BALEANU-CAPUTO MODEL OF THE LIENARD'S EQUATION
    Momani, Shaher
    Abu Arqub, Omar
    Maayah, Banan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
  • [36] Modelling the impact of education and memory on the management of diabetes mellitus using Atangana-Baleanu-Caputo fractional order model
    Olayiwola, Morufu Oyedunsi
    Alaje, Adedapo Ismaila
    Yunus, Akeem Olarewaju
    NONLINEAR DYNAMICS, 2025, 113 (08) : 9165 - 9185
  • [37] Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives
    Bedi, Pallavi
    Kumar, Anoop
    Khan, Aziz
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [38] Analytical solution of the Atangana-Baleanu-Caputo fractional differential equations using Pythagorean fuzzy sets
    Akram, Muhammad
    Muhammad, Ghulam
    Ahmad, Daud
    GRANULAR COMPUTING, 2023, 8 (04) : 667 - 687
  • [39] Study of fractional forced KdV equation with Caputo-Fabrizio and Atangana-Baleanu-Caputo differential operators
    AlBaidani, Mashael M.
    Aljuaydi, Fahad
    Alharthi, N. S.
    Khan, Adnan
    Ganie, Abdul Hamid
    AIP ADVANCES, 2024, 14 (01)
  • [40] Space-time variable-order carbon nanotube model using modified Atangana-Baleanu-Caputo derivative
    Sweilam, Nasser Hussain
    Khater, Khloud Ramadan
    Asker, Zafer Mohamed
    Kareem, Waleed Abdel
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2024, 13 (01):