Optimal control for cancer treatment mathematical model using Atangana-Baleanu-Caputo fractional derivative

被引:56
|
作者
Sweilam, Nasser Hassan [1 ]
Al-Mekhlafi, Seham Mahyoub [2 ]
Assiri, Taghreed [3 ]
Atangana, Abdon [4 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Sanaa Univ, Fac Educ, Dept Math, Sanaa, Yemen
[3] Umm Alqura Univ, Fac Sci, Dept Math, Mecca, Saudi Arabia
[4] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
关键词
Fractional-order derivatives; Mathematical cancer models; Anti-angiogenic therapy; Immunotherapy; Iterative optimal control method; The nonstandard two-step Lagrange interpolation method; 37N25; 49J15; 26A33; FINITE-DIFFERENCE SCHEMES; TUMOR; EQUATIONS; GROWTH; FORMULATION; TRENDS; IMPACT;
D O I
10.1186/s13662-020-02793-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, optimal control for a fractional-order nonlinear mathematical model of cancer treatment is presented. The suggested model is determined by a system of eighteen fractional differential equations. The fractional derivative is defined in the Atangana-Baleanu Caputo sense. Necessary conditions for the control problem are derived. Two control variables are suggested to minimize the number of cancer cells. Two numerical methods are used for simulating the proposed optimal system. The methods are the iterative optimal control method and the nonstandard two-step Lagrange interpolation method. In order to validate the theoretical results, numerical simulations and comparative studies are given.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Optimal control for cancer treatment mathematical model using Atangana–Baleanu–Caputo fractional derivative
    Nasser Hassan Sweilam
    Seham Mahyoub Al-Mekhlafi
    Taghreed Assiri
    Abdon Atangana
    Advances in Difference Equations, 2020
  • [2] Analysis of the fractional diffusion equations described by Atangana-Baleanu-Caputo fractional derivative
    Sene, Ndolane
    Abdelmalek, Karima
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 158 - 164
  • [3] Fractional order mathematical model of Ebola virus under Atangana-Baleanu-Caputo operator
    Yadav, Pooja
    Jahan, Shah
    Nisar, Kottakkaran Sooppy
    RESULTS IN CONTROL AND OPTIMIZATION, 2023, 13
  • [4] On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Kucche, Kishor D.
    Alqudah, Manar A.
    Ali, Saeed M.
    Jeelani, Mdi Begum
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [5] Study on generalized fuzzy fractional human liver model with Atangana-Baleanu-Caputo fractional derivative
    Verma, Lalchand
    Meher, Ramakanta
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (11):
  • [6] On a nonlocal implicit problem under Atangana-Baleanu-Caputo fractional derivative
    Alnahdi, Abeer S.
    Jeelani, Mdi Begum
    Abdo, Mohammed S.
    Ali, Saeed M.
    Saleh, S.
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [7] On Nonlinear Hybrid Fractional Differential Equations with Atangana-Baleanu-Caputo Derivative
    Sutar, Sagar T.
    Kucche, Kishor D.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [8] Mathematical analysis of a coronavirus model with Caputo, Caputo-Fabrizio-Caputo fractional and Atangana-Baleanu-Caputo differential operators
    ul Haq, Ihtisham
    Ali, Nigar
    Ahmad, Hijaz
    Sabra, Ramadan
    Albalwi, M. Daher
    Ahmad, Imtiaz
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2025, 18 (01)
  • [9] Computational dynamics of a fractional order substance addictions transfer model with Atangana-Baleanu-Caputo derivative
    Jose, Sayooj Aby
    Ramachandran, Raja
    Baleanu, Dumitru
    Panigoro, Hasan S.
    Alzabut, Jehad
    Balas, Valentina E.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 5060 - 5085
  • [10] Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative
    Kucche, Kishor D.
    Sutar, Sagar T.
    CHAOS SOLITONS & FRACTALS, 2021, 143