Distance Bounds for Graphs with Some Negative Bakry-Emery Curvature

被引:10
|
作者
Liu, Shiping [1 ]
Muench, Florentin [2 ]
Peyerimhoff, Norbert [3 ]
Rose, Christian [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Max Planck Inst Math Nat Wissensch, Inselstr 22, D-04103 Leipzig, Germany
[3] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
关键词
Bakry-Emery curvature; discrete Bonnet-Myers theorem; intrinsic metric; heat semigroup; METRIC-MEASURE-SPACES; LI-YAU INEQUALITY; RICCI CURVATURE; STOCHASTIC COMPLETENESS; LAPLACIAN; SPECTRUM; GEOMETRY;
D O I
10.1515/agms-2019-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove distance bounds for graphs possessing positive Bakry-Emery curvature apart from an exceptional set, where the curvature is allowed to be non-positive. If the set of non-positively curved vertices is finite, then the graph admits an explicit upper bound for the diameter. Otherwise, the graph is a subset of the tubular neighborhood with an explicit radius around the non-positively curved vertices. Those results seem to be the first assuming non-constant Bakry-Emery curvature assumptions on graphs.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条