Eigenvalue Estimates on Bakry-Emery Manifolds

被引:4
|
作者
Charalambous, Nelia [1 ]
Lu, Zhiqin [2 ]
Rowlett, Julie [3 ,4 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Chalmers Univ Technol, Math Sci, SE-41296 Gothenburg, Sweden
[4] Univ Gothenburg, SE-41296 Gothenburg, Sweden
来源
基金
美国国家科学基金会;
关键词
SCHRODINGER-OPERATORS; RICCI CURVATURE; 1ST EIGENVALUE; LOWER BOUNDS; LAPLACIAN; KERNEL; DIAMETER; GAP;
D O I
10.1007/978-3-319-12547-3_2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We demonstrate lower bounds for the eigenvalues of compact Bakry-Emery manifolds with and without boundary. The lower bounds for the first eigenvalue rely on a generalized maximum principle which allows gradient estimates in the Riemannian setting to be directly applied to the Bakry-Emery setting. Lower bounds for all eigenvalues are demonstrated using heat kernel estimates and a suitable Sobolev inequality.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 50 条