Two-level additive preconditioners for edge element discretizations of time-harmonic Maxwell equations

被引:14
|
作者
Zhong, Liuqiang [1 ]
Liu, Chunmei [2 ]
Shu, Shi [3 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Yongzhou 425199, Peoples R China
[3] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; GMRES method; Edge finite element; Time-harmonic Maxwell equations; MIXED FINITE-ELEMENTS; ALGORITHM; H(DIV); GMRES;
D O I
10.1016/j.camwa.2013.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-level additive preconditioners are presented for edge element discretizations of time-harmonic Maxwell equations. The key is to construct a special "coarse mesh" space, which adds the kernel of the curl-operator in a fine space to a coarse mesh space, to solve the original problem, and then uses the fine mesh space to solve the H(curl)-elliptic problem. It is shown that the generalized minimal residual (GMRES) method applied to the preconditioned system converges uniformly provided that the coarsest mesh size is reasonably small (but independent of the fine mesh size) and the parameter for the "coarse mesh" space solver is sufficiently large. Numerical experiments show the efficiency of the proposed approach. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:432 / 440
页数:9
相关论文
共 50 条
  • [31] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [32] Time-Harmonic Maxwell’s Equations in Periodic Waveguides
    A. Kirsch
    B. Schweizer
    Archive for Rational Mechanics and Analysis, 2025, 249 (3)
  • [33] Time-harmonic Maxwell equations with asymptotically linear polarization
    Qin, Dongdong
    Tang, Xianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [34] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [35] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [36] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [37] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [38] Discontinuous Galerkin methods for the time-harmonic Maxwell equations
    Houston, P
    Perugia, I
    Schneebeli, A
    Schötzau, D
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 483 - 492
  • [39] THE TIME-HARMONIC MAXWELL EQUATIONS IN A DOUBLY PERIODIC STRUCTURE
    DOBSON, D
    FRIEDMAN, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) : 507 - 528
  • [40] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137