Two-level additive preconditioners for edge element discretizations of time-harmonic Maxwell equations

被引:14
|
作者
Zhong, Liuqiang [1 ]
Liu, Chunmei [2 ]
Shu, Shi [3 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Yongzhou 425199, Peoples R China
[3] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; GMRES method; Edge finite element; Time-harmonic Maxwell equations; MIXED FINITE-ELEMENTS; ALGORITHM; H(DIV); GMRES;
D O I
10.1016/j.camwa.2013.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-level additive preconditioners are presented for edge element discretizations of time-harmonic Maxwell equations. The key is to construct a special "coarse mesh" space, which adds the kernel of the curl-operator in a fine space to a coarse mesh space, to solve the original problem, and then uses the fine mesh space to solve the H(curl)-elliptic problem. It is shown that the generalized minimal residual (GMRES) method applied to the preconditioned system converges uniformly provided that the coarsest mesh size is reasonably small (but independent of the fine mesh size) and the parameter for the "coarse mesh" space solver is sufficiently large. Numerical experiments show the efficiency of the proposed approach. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:432 / 440
页数:9
相关论文
共 50 条
  • [21] The Gautschi time stepping scheme for edge finite element discretizations of the Maxwell equations
    Botchev, M. A.
    Harutyunyan, D.
    van der Vegt, J. J. W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 216 (02) : 654 - 686
  • [22] Nonlinear time-harmonic Maxwell equations in domains
    Thomas Bartsch
    Jarosław Mederski
    Journal of Fixed Point Theory and Applications, 2017, 19 : 959 - 986
  • [23] Nonlinear time-harmonic Maxwell equations in domains
    Bartsch, Thomas
    Mederski, Jarosaw
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 959 - 986
  • [24] Multilevel solution of the time-harmonic Maxwell's equations based on edge elements
    Beck, R
    Hiptmair, R
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (07) : 901 - 920
  • [25] Multilevel solution of the time-harmonic Maxwell's equations based on edge elements
    Konrad-Zuse-Zentrum Berlin, Takustraße 7, D-14195 Berlin, Germany
    不详
    不详
    Int J Numer Methods Eng, 7 (901-920):
  • [26] Convergence analysis of adaptive edge finite element method for variable coefficient time-harmonic Maxwell's equations
    He, Bin
    Yang, Wei
    Wang, Hao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [27] A discontinuous least squares finite element method for time-harmonic Maxwell equations
    Li, Ruo
    Liu, Qicheng
    Yang, Fanyi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) : 817 - 839
  • [28] A weak Galerkin finite element method for indefinite time-harmonic Maxwell equations
    Xie, Yingying
    Tang, Ming
    Tang, Chunming
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 435
  • [29] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Gabriel Wittum
    Journal of Computational Mathematics, 2009, (05) : 563 - 572
  • [30] OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Zhong, Liuqiang
    Shu, Shi
    Wittum, Gabriel
    Xu, Jinchao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (05) : 563 - 572