Two-level additive preconditioners for edge element discretizations of time-harmonic Maxwell equations

被引:14
|
作者
Zhong, Liuqiang [1 ]
Liu, Chunmei [2 ]
Shu, Shi [3 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Yongzhou 425199, Peoples R China
[3] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; GMRES method; Edge finite element; Time-harmonic Maxwell equations; MIXED FINITE-ELEMENTS; ALGORITHM; H(DIV); GMRES;
D O I
10.1016/j.camwa.2013.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-level additive preconditioners are presented for edge element discretizations of time-harmonic Maxwell equations. The key is to construct a special "coarse mesh" space, which adds the kernel of the curl-operator in a fine space to a coarse mesh space, to solve the original problem, and then uses the fine mesh space to solve the H(curl)-elliptic problem. It is shown that the generalized minimal residual (GMRES) method applied to the preconditioned system converges uniformly provided that the coarsest mesh size is reasonably small (but independent of the fine mesh size) and the parameter for the "coarse mesh" space solver is sufficiently large. Numerical experiments show the efficiency of the proposed approach. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:432 / 440
页数:9
相关论文
共 50 条
  • [1] Schwarz Preconditioning for High Order Edge Element Discretizations of the Time-Harmonic Maxwell's Equations
    Bonazzoli, Marcella
    Dolean, Victorita
    Pasquetti, Richard
    Rapetti, Francesca
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXIII, 2017, 116 : 117 - 124
  • [2] Preconditioners for the discretized time-harmonic Maxwell equations in mixed form
    Greif, Chen
    Schoetzau, Dominik
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (04) : 281 - 297
  • [3] Preconditioners and their analyses for edge element saddle-point systems arising from time-harmonic Maxwell’s equations
    Ying Liang
    Hua Xiang
    Shiyang Zhang
    Jun Zou
    Numerical Algorithms, 2021, 86 : 281 - 302
  • [4] Preconditioners and their analyses for edge element saddle-point systems arising from time-harmonic Maxwell's equations
    Liang, Ying
    Xiang, Hua
    Zhang, Shiyang
    Zou, Jun
    NUMERICAL ALGORITHMS, 2021, 86 (01) : 281 - 302
  • [6] Preconditioners for higher order edge finite element discretizations of Maxwell’s equations
    LiuQiang Zhong
    Shi Shu
    DuDu Sun
    Lin Tan
    Science in China Series A: Mathematics, 2008, 51
  • [7] Preconditioners for higher order edge finite element discretizations of Maxwell's equations
    Zhong LiuQiang
    Shu Shi
    Sun Dudu
    Tan Lin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1537 - 1548
  • [8] A Fast Cascadic Multigrid Method for Edge Element Discretizations of Time Harmonic Maxwell Equations
    Wang, Jinxuan
    Wu, Xiaoxin
    Pan, Kejia
    SSRN, 2023,
  • [9] High order edge finite element approximations for the time-harmonic Maxwell's equations
    Bonazzoli, Marcella
    Gaburro, Elena
    Dolean, Victorita
    Rapetti, Francesca
    2014 IEEE CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2014,
  • [10] The Weighted Edge Finite Element Method for Time-harmonic Maxwell Equations with Strong Singularity
    Rukavishnikov, Viktor
    Mosolapov, Andrey
    2014 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY (MMET), 2014, : 148 - 151