Stereo Visual Odometry Failure Recovery Using Monocular Techniques

被引:0
|
作者
Giubilato, Riccardo [1 ]
Chiodini, Sebastiano [1 ]
Pertile, Marco [1 ]
Debei, Stefano [1 ]
机构
[1] Univ Padua, Dept Ind Engn, CISAS G Colombo, Via Venezia 15, I-35131 Padua, Italy
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Stereo visual odometry is one of the most accurate dead-reckoning methods for estimating the motion of a moving vehicle but it strongly depends on a robust matching of the image features in the stereo frame. If a stereo camera is observing the environment from a critically small distance the two field of view can be subjected to poor or absent overlapping. That leads to failure of the computation pipeline because no stereo observations can be made. In this paper, we present a solution to this problem by taking advantage of monocular visual odometry techniques to propagate the pose estimations when the number of feature matches in the stereo frame is too low to produce accurate results. The proposed algorithm is tested on a challenging scenario for a stereo setup and a ground truth is given by mounting the stereo camera on a linear slide. Experimental results show that our algorithm is able to successfully recover failures of the stereo pipeline, obtaining a final position error of 1.2% of the total travelled path length in our dataset.
引用
收藏
页码:158 / 163
页数:6
相关论文
共 50 条
  • [41] Robust Monocular Visual Odometry using Optical Flows for Mobile Robots
    Li Haifeng
    Hu Zunhe
    Chen Xinwei
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 6003 - 6007
  • [42] Robust Multispectral Visual-Inertial Navigation With Visual Odometry Failure Recovery
    Beauvisage, Axel
    Ahiska, Kenan
    Aouf, Nabil
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 9089 - 9101
  • [43] Survey and Research Challenges in Monocular Visual Odometry
    Neyestani, Arman
    Picariello, Francesco
    Basiri, Amin
    Daponte, Pasquale
    De Vito, Luca
    2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR LIVING ENVIRONMENT, METROLIVENV, 2023, : 107 - 112
  • [44] Depth Prediction for Monocular Direct Visual Odometry
    Cheng, Ran
    Agia, Christopher
    Meger, David
    Dudek, Gregory
    2020 17TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV 2020), 2020, : 70 - 77
  • [45] Robust Ground Vehicle Monocular Visual Odometry
    Sabry, Mohamed
    Al-Kaff, Abdulla
    Hussein, Ahmed
    Abdennadher, Slim
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3587 - 3592
  • [46] Monocular Visual Odometry Based on Hybrid Parameterization
    Mohamed, Sherif A. S.
    Haghbayan, Mohammad-Hashem
    Heikkonen, Jukka
    Tenhunen, Hannu
    Plosila, Juha
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [47] Pose Graph for Improved Monocular Visual Odometry
    Kieman, Pawel
    Narkiewicz, Janusz
    2014 19TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2014, : 549 - 553
  • [48] Resolving Scale Ambiguity for Monocular Visual Odometry
    Choi, Sunglok
    Park, Jaehyun
    Yu, Wonpil
    2013 10TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2013, : 604 - 608
  • [49] Deep Monocular Visual Odometry for Ground Vehicle
    Wang, Xiangwei
    Zhang, Hui
    IEEE ACCESS, 2020, 8 : 175220 - 175229
  • [50] Multimodal Scale Estimation for Monocular Visual Odometry
    Fanani, Nolang
    Stuerck, Alina
    Barnada, Marc
    Mester, Rudolf
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 1714 - 1721