Stereo Visual Odometry Failure Recovery Using Monocular Techniques

被引:0
|
作者
Giubilato, Riccardo [1 ]
Chiodini, Sebastiano [1 ]
Pertile, Marco [1 ]
Debei, Stefano [1 ]
机构
[1] Univ Padua, Dept Ind Engn, CISAS G Colombo, Via Venezia 15, I-35131 Padua, Italy
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Stereo visual odometry is one of the most accurate dead-reckoning methods for estimating the motion of a moving vehicle but it strongly depends on a robust matching of the image features in the stereo frame. If a stereo camera is observing the environment from a critically small distance the two field of view can be subjected to poor or absent overlapping. That leads to failure of the computation pipeline because no stereo observations can be made. In this paper, we present a solution to this problem by taking advantage of monocular visual odometry techniques to propagate the pose estimations when the number of feature matches in the stereo frame is too low to produce accurate results. The proposed algorithm is tested on a challenging scenario for a stereo setup and a ground truth is given by mounting the stereo camera on a linear slide. Experimental results show that our algorithm is able to successfully recover failures of the stereo pipeline, obtaining a final position error of 1.2% of the total travelled path length in our dataset.
引用
收藏
页码:158 / 163
页数:6
相关论文
共 50 条
  • [21] Improving the Accuracy of Stereo Visual Odometry Using Visual Illumination Estimation
    Clement, Lee
    Peretroukhin, Valentin
    Kelly, Jonathan
    2016 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, 2017, 1 : 409 - 419
  • [22] Monocular Visual Odometry in Urban Environments Using an Omnidirectional Camera
    Tardif, Jean-Philippe
    Pavlidis, Yanis
    Daniilidis, Kostas
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 2531 - 2538
  • [23] Using Unsupervised Deep Learning Technique for Monocular Visual Odometry
    Liu, Qiang
    Li, Ruihao
    Hu, Huosheng
    Gu, Dongbing
    IEEE ACCESS, 2019, 7 : 18076 - 18088
  • [24] Incorporating Learned Depth Perception Into Monocular Visual Odometry to Improve Scale Recovery
    Mailka, Hamza
    Abouzahir, Mohamed
    Ramzi, Mustapha
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 1060 - 1068
  • [25] Monocular depth recovery method assisting visual odometry initialization in corridor environment
    Xu, Xiaosu
    Liu, Yehao
    Yao, Yiqing
    Xia, Ruoyan
    Wang, Zijian
    Fan, Mingze
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 32 (08): : 753 - 761
  • [26] Monocular Visual Odometry Using Vertical Lines in Urban Area
    Li, Haifeng
    Wang, Hongpeng
    Liu, Jingtai
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 5676 - 5681
  • [27] Accurate and Robust Scale Recovery for Monocular Visual Odometry Based on Plane Geometry
    Tian, Rui
    Zhang, Yunzhou
    Zhu, Delong
    Liang, Shiwen
    Coleman, Sonya
    Kerr, Dermot
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5296 - 5302
  • [28] Monocular Visual Odometry With Cyclic Estimation
    Pereira, Fabio Irigon
    Ilha, Gustavo
    Luft, Joel
    Negreiros, Marcelo
    Susin, Altamiro
    2017 30TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2017, : 1 - 6
  • [29] Scale Correct Monocular Visual Odometry Using a LiDAR Altimeter
    Giubilato, Riccardo
    Chiodini, Sebastiano
    Pertile, Marco
    Debei, Stefano
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 3694 - 3700
  • [30] Stereo Visual Odometry for Urban Vehicles Using Ground Features
    de la Escalera, Arturo
    Izquierdo, Ebroul
    Martin, David
    Garcia, Fernando
    Maria Armingol, Jose
    ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1, 2016, 417 : 385 - 397