The unstable spectrum of the Navier-Stokes operator in the limit of vanishing viscosity

被引:2
|
作者
Shvydkoy, Roman [1 ]
Friedlander, Susan [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2008年 / 25卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.anihpc.2007.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Navier-Stokes equations for the motion of an incompressible fluid in three dimensions are considered. A partition of the evolution operator into high frequency and low frequency parts is derived. This decomposition is used to prove that the eigenvalues of the Navier-Stokes operator in the inviscid limit converge precisely to the eigenvalues of the Euler operator beyond the essential spectrum. (C) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:713 / 724
页数:12
相关论文
共 50 条
  • [11] Vanishing viscosity limit for incompressible Navier-Stokes equations with Navier boundary conditions for small slip length
    Wang, Ya-Guang
    Yin, Jierong
    Zhu, Shiyong
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (10)
  • [12] Vanishing viscosity limit of the compressible Navier-Stokes equations with finite energy and total mass
    He, Lin
    Wang, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 310 : 327 - 361
  • [13] Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow
    Chen, Gui-Qiang
    Perepelitsa, Mikhail
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (11) : 1469 - 1504
  • [14] Navier-Stokes equations in a thin domain with vanishing viscosity
    Laydi, MR
    Lenzner, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (01): : 127 - 130
  • [15] On the essential spectrum of the linearized Navier-Stokes operator
    Faierman, M
    Fries, RJ
    Mennicken, R
    Möller, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 38 (01) : 9 - 27
  • [16] The limit of vanishing viscosity for the incompressible 3D Navier-Stokes equations with helical symmetry
    Jiu, Quansen
    Lopes Filho, Milton C.
    Niu, Dongjuan
    Nussenzveig Lopes, Helena J.
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 : 238 - 246
  • [17] Vanishing viscosity limit for homogeneous axisymmetric no-swirl solutions of stationary Navier-Stokes equations
    Li, Li
    Li, YanYan
    Yan, Xukai
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) : 3599 - 3652
  • [18] On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition
    Xiao, Yuelong
    Xin, Zhouping
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (07) : 1027 - 1055
  • [19] A new boundary condition for the three-dimensional Navier-Stokes equation and the vanishing viscosity limit
    Xiao, Yuelong
    Xin, Zhouping
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (11)
  • [20] Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow with Vacuum
    Geng, Yongcai
    Li, Yachun
    Zhu, Shengguo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (02) : 727 - 775