Navier-Stokes equations in a thin domain with vanishing viscosity

被引:0
|
作者
Laydi, MR [1 ]
Lenzner, M [1 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, LCS, F-25030 Besancon, France
关键词
D O I
10.1016/S0764-4442(97)82725-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of a fluid submitted to a traction in a thin basin with vanishing isotropic viscosity. The model we get links horizontal velocity and pressure limits. We give the exact solution in a particular case and a variational formulation in the general case.
引用
收藏
页码:127 / 130
页数:4
相关论文
共 50 条
  • [1] Vanishing viscosity limit for Navier-Stokes equations with general viscosity to Euler equations
    Zhang, Tingting
    APPLICABLE ANALYSIS, 2018, 97 (11) : 1967 - 1982
  • [2] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    Huang FeiMin
    Wang Yi
    Wang Yong
    Yang Tong
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 653 - 672
  • [3] Vanishing viscosity limit of Navier-Stokes Equations in Gevrey class
    Cheng, Feng
    Li, Wei-Xi
    Xu, Chao-Jiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) : 5161 - 5176
  • [4] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    FeiMin Huang
    Yi Wang
    Yong Wang
    Tong Yang
    Science China Mathematics, 2015, 58 : 653 - 672
  • [5] A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity
    Iftimie, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) : 1483 - 1493
  • [7] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    HUANG FeiMin
    WANG Yi
    WANG Yong
    YANG Tong
    ScienceChina(Mathematics), 2015, 58 (04) : 653 - 672
  • [8] Navier-Stokes equations with Coriolis force and vanishing vertical viscosity
    Colin, T
    Fabrie, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 275 - 280
  • [9] On the Navier-Stokes equations with variable viscosity in a noncylindrical domain
    de Araujo, G. M.
    Miranda, M. Milla
    Medeiros, L. A.
    APPLICABLE ANALYSIS, 2007, 86 (03) : 287 - 313
  • [10] On Strong Convergence of Attractors of Navier-Stokes Equations in the Limit of Vanishing Viscosity
    Ilyin, A. A.
    Chepyzhov, V. V.
    MATHEMATICAL NOTES, 2017, 101 (3-4) : 746 - 750