Navier-Stokes equations with Coriolis force and vanishing vertical viscosity

被引:0
|
作者
Colin, T [1 ]
Fabrie, P [1 ]
机构
[1] UNIV BORDEAUX 1,F-33405 TALENCE,FRANCE
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the 3-D Navier-Stokes equations with Coriolis force of order 1/epsilon and vanishing vertical viscosity of order epsilon. For suitable initial data, we prove some global or-long-time existence results. Moreover, we obtain convergence as epsilon goes to 0 to the 2-D Navier-Stokes equations. We deal with periodic boundary conditions and non-homogeneous strain; in this case, we compute and justify the corrector.
引用
收藏
页码:275 / 280
页数:6
相关论文
共 50 条
  • [1] A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity
    Iftimie, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) : 1483 - 1493
  • [2] A remark on the Navier-Stokes equations with the Coriolis force
    Zhao, Hengjun
    Wang, Yinxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7323 - 7332
  • [3] Navier-Stokes equations in a thin domain with vanishing viscosity
    Laydi, MR
    Lenzner, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (01): : 127 - 130
  • [4] Vanishing viscosity limit for Navier-Stokes equations with general viscosity to Euler equations
    Zhang, Tingting
    APPLICABLE ANALYSIS, 2018, 97 (11) : 1967 - 1982
  • [5] Recurrent motion of stochastic Navier-Stokes equations with Coriolis force
    Chen, Feng
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (11) : 2080 - 2095
  • [6] UNIFORM LOCAL SOLVABILITY FOR THE NAVIER-STOKES EQUATIONS WITH THE CORIOLIS FORCE
    Giga, Yoshikazu
    Inui, Katsuya
    Mahalov, Alex
    Matsui, ShiN'Ya
    METHODS AND APPLICATIONS OF ANALYSIS, 2005, 12 (04) : 381 - 393
  • [7] On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations
    Konieczny, Pawel
    Yoneda, Tsuyoshi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (10) : 3859 - 3873
  • [8] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    Huang FeiMin
    Wang Yi
    Wang Yong
    Yang Tong
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 653 - 672
  • [9] Vanishing viscosity limit of Navier-Stokes Equations in Gevrey class
    Cheng, Feng
    Li, Wei-Xi
    Xu, Chao-Jiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) : 5161 - 5176
  • [10] SOME RECURRENT MOTIONS OF NAVIER-STOKES EQUATIONS WITH CORIOLIS FORCE
    Chen, Feng
    Jiang, Xiaomeng
    Li, Yong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (08): : 4311 - 4324