We consider the 3-D Navier-Stokes equations with Coriolis force of order 1/epsilon and vanishing vertical viscosity of order epsilon. For suitable initial data, we prove some global or-long-time existence results. Moreover, we obtain convergence as epsilon goes to 0 to the 2-D Navier-Stokes equations. We deal with periodic boundary conditions and non-homogeneous strain; in this case, we compute and justify the corrector.
机构:
Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaSichuan Univ, Dept Math, Chengdu 610064, Peoples R China
He, Lin
Wang, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaSichuan Univ, Dept Math, Chengdu 610064, Peoples R China
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Jiu, Quansen
Lopes Filho, Milton C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, BrazilCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Lopes Filho, Milton C.
Niu, Dongjuan
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Niu, Dongjuan
Nussenzveig Lopes, Helena J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Caixa Postal 68530, BR-21941909 Rio De Janeiro, RJ, BrazilCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China