A genus-3 topological recursion relation

被引:20
|
作者
Kimura, T
Liu, XB
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
D O I
10.1007/s00220-005-1481-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we give a new genus-3 topological recursion relation for Gromov-Witten invariants of compact symplectic manifolds. This formula also applies to intersection numbers on moduli spaces of spin curves. A by-product of the proof of this formula is a new relation in the tautological ring of the moduli space of 1-pointed genus-3 stable curves.
引用
收藏
页码:645 / 661
页数:17
相关论文
共 50 条
  • [41] A RECURSION RELATION
    CARLITZ, L
    SIAM REVIEW, 1966, 8 (04) : 539 - &
  • [42] Explicit computations of Serre's obstruction for genus-3 curves and application to optima curves
    Ritzenthaler, Christophe
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 : 192 - 207
  • [43] COMPLEX-SURFACES POLARIZED BY AN AMPLE AND SPANNED LINE BUNDLE OF GENUS-3
    LANTERI, A
    LIVORNI, EL
    GEOMETRIAE DEDICATA, 1989, 31 (03) : 267 - 289
  • [44] Genus-3 Lefschetz Fibrations and Exotic 4-Manifolds with b2+=3
    Altunoz, Tuln
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
  • [45] Topological recursion and mirror curves
    Bouchard, Vincent
    Sulkowski, Piotr
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 16 (05) : 1443 - 1483
  • [46] Supereigenvalue models and topological recursion
    Bouchard, Vincent
    Osuga, Kento
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (04):
  • [47] Degenerate and Irregular Topological Recursion
    Alexandrov, A.
    Bychkov, B.
    Dunin-Barkowski, P.
    Kazarian, M.
    Shadrin, S.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (05)
  • [48] Topological recursion on the Bessel curve
    Do, Norman
    Norbury, Paul
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (01) : 53 - 73
  • [49] Topological recursion with hard edges
    Chekhov, Leonid
    Norbury, Paul
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (03)
  • [50] Topological recursion in the Ramond sector
    Osuga, Kento
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)