Explicit computations of Serre's obstruction for genus-3 curves and application to optima curves

被引:6
|
作者
Ritzenthaler, Christophe [1 ]
机构
[1] Inst Math Luminy, UMR 6206, F-13288 Marseille, France
关键词
TEICHMULLER MODULAR-FORMS; FINITE-FIELDS; RATIONAL-POINTS; JACOBIAN VARIETIES; HERMITIAN-FORMS; ISOGENY CLASSES; PRODUCTS; NUMBER;
D O I
10.1112/S1461157009000576
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a field of characteristic other than 2. There can be an obstruction to a principally polarized abelian threefold (A,a) over k, which is a Jacobian over k, being a Jacobian over k; this can be computed in terms of the rationality of the square root of the value of a certain Siegel modular form. We show how to do this explicitly for principally polarized abelian threefolds which are the third power of an elliptic curve with complex multiplication. We use our numerical results to prove or refute the existence of some optimal curves of genus 3.
引用
收藏
页码:192 / 207
页数:16
相关论文
共 50 条
  • [1] EXPLICIT COMPLETE CURVES IN THE MODULI SPACE OF CURVES OF GENUS-3
    ZAAL, C
    GEOMETRIAE DEDICATA, 1995, 56 (02) : 185 - 196
  • [2] SINGULARITIES OF MODULI SCHEME FOR CURVES OF GENUS-3
    OORT, F
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1975, 78 (02): : 170 - 174
  • [3] WEIERSTRASS POINTS ON RATIONAL NODAL CURVES OF GENUS-3
    LAX, RF
    WIDLAND, C
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (03): : 286 - 294
  • [4] AUTOMORPHISMS OF CURVES OF GENUS-3 IN CHARACTERISTIC-2
    TUFFERY, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (02): : 205 - 210
  • [5] NONCLASSICAL GORENSTEIN CURVES OF ARITHMETIC GENUS-3 AND GENUS-4
    FREITAS, ES
    STOHR, KO
    MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (04) : 479 - 502
  • [6] SYMMETRICAL CUBIC SURFACES AND CURVES OF GENUS-3 AND GENUS-4
    RECILLAS, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7B (04): : 787 - 819
  • [7] GENERALIZED EXPLICIT DESCENT AND ITS APPLICATION TO CURVES OF GENUS 3
    Bruin, Nils
    Poonen, Bjorn
    Stoll, Michael
    FORUM OF MATHEMATICS SIGMA, 2016, 4
  • [8] AUTOMORPHISM-GROUPS OF REAL ALGEBRAIC-CURVES OF GENUS-3
    BUJALANCE, E
    ETAYO, JJ
    GAMBOA, JM
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1986, 62 (01) : 40 - 42
  • [9] Explicit geometry on a family of curves of genus 3
    Guárdia, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 299 - 310
  • [10] A DESCENT METHOD FOR EXPLICIT COMPUTATIONS ON CURVES
    Filom, K.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06) : 1989 - 2016