Besov Spaces, Multipliers and Univalent Functions

被引:4
|
作者
Galanopoulos, Petros [1 ]
Girela, Daniel [1 ]
Martin, Maria J. [2 ]
机构
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
Besov spaces; Bloch space; Mobius invariant spaces; Univalent functions; Multipliers; CARLESON MEASURES; POINTWISE MULTIPLIERS; INTEGRATION OPERATORS; BERGMAN SPACES; GROWTH; BLOCH; INTERPOLATION; PROPERTY; BALL;
D O I
10.1007/s11785-011-0160-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We let B (p) (1 a parts per thousand currency sign p < a) denote the conformally invariant Besov spaces of analytic functions in the unit disc . Our main objective in this article is to investigate the basic problem of the boundedness of multiplication operators between Besov spaces looking for checkable descriptions of the spaces of multipliers M(B (p) , B (q) ), 1 a parts per thousand currency sign p, q < a, and giving an extense class of explicit examples of such multipliers. We study also some basic types of functions in M(B (p) , B (q) ) spaces; loosely speaking, we investigate which functions of certain important types (lacunary series, univalent functions, "modified"-inner functions) are to be found in the spaces M(B (p) , B (q) ).
引用
收藏
页码:1081 / 1116
页数:36
相关论文
共 50 条
  • [41] Radial variation of functions in Besov spaces
    Walsh, David
    PUBLICACIONS MATEMATIQUES, 2006, 50 (02) : 371 - 399
  • [42] ON THE COMPOSITION OF FUNCTIONS IN MULTIDIMENSIONAL BESOV SPACES
    Moussai, Madani
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (02): : 501 - 514
  • [43] Univalent Functions, VMOA and Related Spaces
    Petros Galanopoulos
    Daniel Girela
    Rodrigo Hernández
    Journal of Geometric Analysis, 2011, 21 : 665 - 682
  • [44] Univalent Functions, VMOA and Related Spaces
    Galanopoulos, Petros
    Girela, Daniel
    Hernandez, Rodrigo
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (03) : 665 - 682
  • [45] Model spaces containing univalent functions
    Belov, Yu. S.
    Fedorovskiy, K. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (01) : 172 - 174
  • [46] Univalent functions, Hardy spaces and spaces of Dirichlet type
    Baernstein, A
    Girela, D
    Peláez, JA
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) : 837 - 859
  • [47] Pointwise multipliers for Triebel-Lizorkin and Besov spaces on Lie groups
    Bruno, Tommaso
    Peloso, Marco M.
    Vallarino, Maria
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 188
  • [48] Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions
    Paz Hashash
    Arkady Poliakovsky
    Calculus of Variations and Partial Differential Equations, 2024, 63
  • [49] Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions
    Hashash, Paz
    Poliakovsky, Arkady
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (02)
  • [50] Molecular decomposition and Fourier multipliers for holomorphic Besov and Triebel–Lizorkin spaces
    G. Cleanthous
    A. G. Georgiadis
    M. Nielsen
    Monatshefte für Mathematik, 2019, 188 : 467 - 493