Univalent Functions, VMOA and Related Spaces

被引:0
|
作者
Petros Galanopoulos
Daniel Girela
Rodrigo Hernández
机构
[1] Facultad de Ciencias,Departamento de Análisis Matemático, Universidad de Málaga
[2] Campus de Teatinos,Facultad de Ingeniería y Ciencias
[3] Universidad Adolfo Ibáñez,undefined
来源
关键词
Univalent functions; Bloch function; Besov spaces; Logarithmic Bloch spaces; Logarithmic derivative; Schwarzian derivative; Smooth Jordan curve; 30C35; 30A10; 30D45; 30H05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned mainly with the logarithmic Bloch space ℬlog  which consists of those functions f which are analytic in the unit disc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{D}}$\end{document} and satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup_{\vert z\vert <1}(1-\vert z\vert )\log\frac{1}{1-\vert z\vert}\vert f^{\prime}(z)\vert <\infty $\end{document}, and the analytic Besov spaces Bp, 1≤p<∞. They are all subspaces of the space VMOA. We study the relation between these spaces, paying special attention to the membership of univalent functions in them. We give explicit examples of: A bounded univalent function in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bigcup_{p>1}B^{p}$\end{document} but not in the logarithmic Bloch space.A bounded univalent function in ℬlog  but not in any of the Besov spaces Bp with p<2. We also prove that the situation changes for certain subclasses of univalent functions. Namely, we prove that the convex univalent functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb{D}}$\end{document} which belong to any of the spaces ℬ0, VMOA, Bp (1≤p<∞), ℬlog , or some other related spaces are the same, the bounded ones.
引用
收藏
页码:665 / 682
页数:17
相关论文
共 50 条
  • [1] Univalent Functions, VMOA and Related Spaces
    Galanopoulos, Petros
    Girela, Daniel
    Hernandez, Rodrigo
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (03) : 665 - 682
  • [2] UNIVALENT FUNCTIONS, BLOCH FUNCTIONS AND VMOA
    POMMERENKE, C
    MATHEMATISCHE ANNALEN, 1978, 236 (03) : 199 - 208
  • [3] Locally univalent functions, VMOA and the Dirichlet space
    Gallardo-Gutierrez, Eva A.
    Gonzalez, Maria J.
    Perez-Gonzalez, Fernando
    Pommerenke, Christian
    Rattya, Jouni
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 : 565 - 588
  • [4] Univalent functions in Hardy, Bergman, Bloch and related spaces
    Fernando Pérez-González
    Jouni Rättyä
    Journal d'Analyse Mathématique, 2008, 105 : 125 - 148
  • [5] Univalent functions in hardy, bergman, bloch and related spaces
    Perez-Gonzalez, Fernando
    Rattya, Jouni
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 105 (1): : 125 - 148
  • [6] Besov Spaces, Multipliers and Univalent Functions
    Petros Galanopoulos
    Daniel Girela
    María J. Martín
    Complex Analysis and Operator Theory, 2013, 7 : 1081 - 1116
  • [7] Besov Spaces, Multipliers and Univalent Functions
    Galanopoulos, Petros
    Girela, Daniel
    Martin, Maria J.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (04) : 1081 - 1116
  • [8] Model spaces containing univalent functions
    Belov, Yu. S.
    Fedorovskiy, K. Yu.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (01) : 172 - 174
  • [9] Univalent functions, Hardy spaces and spaces of Dirichlet type
    Baernstein, A
    Girela, D
    Peláez, JA
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (03) : 837 - 859
  • [10] Uniformly locally univalent functions and Hardy spaces
    Kim, Yong Chan
    Sugawa, Toshiyuki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (01) : 61 - 67