Nearly Approximate Transitivity (AT) for Circulant Matrices

被引:1
|
作者
Handelman, David [1 ]
机构
[1] Univ Ottawa, Math Dept, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
approximately transitive; ergodic transformation; circulant matrix; hemicirculant matrix; dimension space; matrix-valued random walk;
D O I
10.4153/CJM-2017-041-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By previous work of Giordano and the author, ergodic actions of Z (and other discrete groups) are completely classified measure-theoretically by their dimension space, a construction analogous to the dimension group used in C*-algebras and topological dynamics. Here we investigate how far from approximately transitive (AT) actions can be that derive from circulant (and related) matrices. It turns out not very: although non-AT actions can arise from this method of construction, under very modest additional conditions, approximate transitivity arises. KIn addition, if we drop the positivity requirement in the isomorphism of dimension spaces, then all these ergodic actions satisfy an analogue of AT. Many examples are provided.
引用
收藏
页码:381 / 415
页数:35
相关论文
共 50 条
  • [41] THE STRUCTURE OF MONOMIAL CIRCULANT MATRICES
    WATERHOUSE, WC
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (03): : 467 - 482
  • [42] Weak convergence in circulant matrices
    Cureg, E
    Mukherjea, A
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (04) : 983 - 1007
  • [43] On circulant complex Hadamard matrices
    Arasu, KT
    De Launey, W
    Ma, SL
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (02) : 123 - 142
  • [44] On circulant thin Lehman matrices
    Sakuma, Tadashi
    Shinohara, Hidehiro
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (04) : 939 - 959
  • [45] Toeplitz and Circulant Matrices: A Review
    Gray, Robert M.
    FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2006, 2 (03): : 155 - 239
  • [46] On Circulant Complex Hadamard Matrices
    K. T. Arasu
    Warwick de Launey
    S. L. Ma
    Designs, Codes and Cryptography, 2002, 25 : 123 - 142
  • [47] DOUBLY STOCHASTIC CIRCULANT MATRICES
    HWANG, SG
    DISCRETE MATHEMATICS, 1991, 94 (01) : 69 - 74
  • [48] Norms of randomized circulant matrices
    Latala, Rafal
    Swiatowski, Witold
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [49] Fourier and Circulant Matrices are Not Rigid
    Dvir, Zeev
    Liu, Allen
    THEORY OF COMPUTING, 2020, 16
  • [50] A COMBINATORIAL THEOREM ON CIRCULANT MATRICES
    CLARK, DS
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (10): : 725 - 729