Toeplitz and Circulant Matrices: A Review

被引:1079
|
作者
Gray, Robert M. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
D O I
10.1561/0100000006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
[ t(0) t(-1) t(-2) ... t(-(n-1)) t(1) t(0) t(-1) . t(2) t(1) t(0) ... . . . ... . t(n-1) ... t(0) ] The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes.
引用
收藏
页码:155 / 239
页数:16
相关论文
共 50 条
  • [1] CIRCULANT PRECONDITIONERS FOR COMPLEX TOEPLITZ MATRICES
    CHAN, RH
    YEUNG, MC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) : 1193 - 1207
  • [2] On the Asymptotic Equivalence of Circulant and Toeplitz Matrices
    Zhu, Zhihui
    Wakin, Michael B.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (05) : 2975 - 2992
  • [3] COHERENT OPTICAL TECHNIQUES FOR DIAGONALIZATION AND INVERSION OF CIRCULANT MATRICES AND CIRCULANT APPROXIMATIONS TO TOEPLITZ MATRICES
    CAO, Q
    GOODMAN, JW
    APPLIED OPTICS, 1984, 23 (06): : 803 - 811
  • [4] A DECOMPOSITION OF TOEPLITZ MATRICES AND OPTIMAL CIRCULANT PRECONDITIONING
    TISMENETSKY, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 154 : 105 - 121
  • [5] Practical Compressive Sensing with Toeplitz and Circulant Matrices
    Yin, Wotao
    Morgan, Simon
    Yang, Junfeng
    Zhang, Yin
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2010, 2010, 7744
  • [6] Circulant preconditioners for analytic functions of Toeplitz matrices
    Hon, Sean
    Wathen, Andrew
    NUMERICAL ALGORITHMS, 2018, 79 (04) : 1211 - 1230
  • [7] Circulant preconditioners for analytic functions of Toeplitz matrices
    Sean Hon
    Andrew Wathen
    Numerical Algorithms, 2018, 79 : 1211 - 1230
  • [8] Circulant and toeplitz chaotic matrices in compressed sensing
    Gan, Hongping
    Cheng, Zhengfu
    Yang, Shouliang
    Liao, Changrong
    Xia, Jihong
    Lei, Mingdong
    Journal of Computational Information Systems, 2015, 11 (04): : 1231 - 1238
  • [9] Circulant preconditioners for functions of Hermitian Toeplitz matrices
    Hon, Sean
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 352 : 328 - 340
  • [10] The Shifted Classical Circulant and Skew Circulant Splitting Iterative Methods for Toeplitz Matrices
    Liu, Zhongyun
    Qin, Xiaorong
    Wu, Nianci
    Zhang, Yulin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (04): : 807 - 815