Bayesian Sparse Estimation Using Double Lomax Priors

被引:3
|
作者
Gu, Xiaojing [1 ]
Leung, Henry [2 ]
Gu, Xingsheng [1 ]
机构
[1] E China Univ Sci & Technol, Shanghai 200237, Peoples R China
[2] Univ Calgary, Calgary, AB T2N 1N4, Canada
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SELECTION; SIGNALS;
D O I
10.1155/2013/176249
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sparsity-promoting prior along with Bayesian inference is an effective approach in solving sparse linear models (SLMs). In this paper, we first introduce a new sparsity-promoting prior coined as Double Lomax prior, which corresponds to a three-level hierarchical model, and then we derive a full variational Bayesian (VB) inference procedure. When noninformative hyperprior is assumed, we further show that the proposed method has one more latent variable than the canonical automatic relevance determination (ARD). This variable has a smoothing effect on the solution trajectories, thus providing improved convergence performance. The effectiveness of the proposed method is demonstrated by numerical simulations including autoregressive (AR) model identification and compressive sensing (CS) problems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Bayesian analysis for the Lomax model using noninformative priors
    He, Daojiang
    Sun, Dongchu
    Zhu, Qing
    STATISTICAL THEORY AND RELATED FIELDS, 2023, 7 (01) : 61 - 68
  • [2] A VARIATIONAL BAYESIAN APPROACH TO COMPRESSIVE SENSING BASED ON DOUBLE LOMAX PRIORS
    Gu, Xiaojing
    Leung, Henry
    Gu, Xingsheng
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5994 - 5998
  • [3] Sparse Bayesian Learning Assisted CFO Estimation Using Nonnegative Laplace Priors
    Huang, Min
    Huang, Lei
    Sun, Weize
    Bao, Weimin
    Zhang, Jihong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (06) : 6151 - 6155
  • [4] Bayesian analysis for the Shannon entropy of the Lomax distribution using noninformative priors
    Dong, Guoqing
    Shakhatreh, Mohammed K.
    He, Daojiang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (06) : 1317 - 1338
  • [5] Sparse Bayesian Learning Using Adaptive LASSO Priors
    Bai Z.-L.
    Shi L.-M.
    Sun J.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (05): : 1193 - 1208
  • [6] SPARSE BAYESIAN REGULARIZATION USING BERNOULLI-LAPLACIAN PRIORS
    Chaari, Lotfi
    Tourneret, Jean-Yves
    Batatia, Hadj
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [7] Sparse Bayesian linear regression using generalized normal priors
    Zhang, Hai
    Wang, Puyu
    Dong, Qing
    Wang, Pu
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2017, 15 (03)
  • [8] BAYESIAN LINEAR REGRESSION WITH SPARSE PRIORS
    Castillo, Ismael
    Schmidt-Hieber, Johannes
    Van der Vaart, Aad
    ANNALS OF STATISTICS, 2015, 43 (05): : 1986 - 2018
  • [9] Sparse Bayesian DOA Estimation Using Hierarchical Synthesis Lasso Priors for Off-Grid Signals
    Yang, Jie
    Yang, Yixin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 872 - 884
  • [10] Sparse Bayesian Learning Using Generalized Double Pareto Prior for DOA Estimation
    Wang, Qisen
    Yu, Hua
    Li, Jie
    Ji, Fei
    Chen, Fangjiong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1744 - 1748