Bayesian Sparse Estimation Using Double Lomax Priors

被引:3
|
作者
Gu, Xiaojing [1 ]
Leung, Henry [2 ]
Gu, Xingsheng [1 ]
机构
[1] E China Univ Sci & Technol, Shanghai 200237, Peoples R China
[2] Univ Calgary, Calgary, AB T2N 1N4, Canada
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SELECTION; SIGNALS;
D O I
10.1155/2013/176249
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sparsity-promoting prior along with Bayesian inference is an effective approach in solving sparse linear models (SLMs). In this paper, we first introduce a new sparsity-promoting prior coined as Double Lomax prior, which corresponds to a three-level hierarchical model, and then we derive a full variational Bayesian (VB) inference procedure. When noninformative hyperprior is assumed, we further show that the proposed method has one more latent variable than the canonical automatic relevance determination (ARD). This variable has a smoothing effect on the solution trajectories, thus providing improved convergence performance. The effectiveness of the proposed method is demonstrated by numerical simulations including autoregressive (AR) model identification and compressive sensing (CS) problems.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A NON-BAYESIAN APPROACH TO ESTIMATION USING TESTED PRIORS
    GEORGE, VT
    KATTI, SK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (05) : 1629 - 1639
  • [22] A sparse Bayesian approach to model structure selection and parameter estimation of dynamical systems using spike-and-slab priors
    Nayek, R.
    Worden, K.
    Cross, E. J.
    Fuentes, R.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2020) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2020), 2020, : 3639 - 3653
  • [23] Sparse Bayesian multiple sources localization using variational approximation for Laplace priors
    Tang, Roubing
    Zhang, Qiaoling
    Zhang, Weiwei
    Ma, Han
    DIGITAL SIGNAL PROCESSING, 2022, 126
  • [24] SAMPLING, FEASIBILITY, AND PRIORS IN BAYESIAN ESTIMATION
    Chorin, Alexandre J.
    Lu, Fei
    Miller, Robert N.
    Morzfeld, Matthias
    Tu, Xuemin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (08) : 4227 - 4246
  • [25] Adaptive sparse estimation of nonlinear chirp signals using Laplace priors
    Tu, Xiaotong
    Liang, Hao
    Jakobsson, Andreas
    Huang, Yue
    Ding, Xinghao
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (01): : 78 - 93
  • [26] The Value of Informative Priors in Bayesian Inference with Sparse Data
    Lenk, Peter
    Orme, Bryan
    JOURNAL OF MARKETING RESEARCH, 2009, 46 (06) : 832 - 845
  • [27] Online Bayesian Sparse Learning with Spike and Slab Priors
    Fang, Shikai
    Zhe, Shandian
    Lee, Kuang-chih
    Zhang, Kai
    Neville, Jennifer
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 142 - 151
  • [28] Bayesian Blind Deconvolution with General Sparse Image Priors
    Babacan, S. Derin
    Molina, Rafael
    Do, Minh N.
    Katsaggelos, Aggelos K.
    COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 341 - 355
  • [29] Sparse image reconstruction using sparse priors
    Ting, Michael
    Raich, Raviv
    Hero, Alfred O., III
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1261 - +
  • [30] Entropy Bayesian Estimation for Lomax Distribution Based on Record
    Hassan, Amal Soliman
    Zaky, Ahmed Nasser
    THAILAND STATISTICIAN, 2021, 19 (01): : 96 - 115